# stable-diffusion.cpp Inference of [Stable Diffusion](https://github.com/CompVis/stable-diffusion) in pure C/C++ ## Features - Plain C/C++ implementation based on [ggml](https://github.com/ggerganov/ggml), working in the same way as [llama.cpp](https://github.com/ggerganov/llama.cpp) - 16-bit, 32-bit float support - 4-bit, 5-bit and 8-bit integer quantization support - Accelerated memory-efficient CPU inference - Only requires ~2.3GB when using txt2img with fp16 precision to generate a 512x512 image - AVX, AVX2 and AVX512 support for x86 architectures - SD1.x and SD2.x support - Original `txt2img` and `img2img` mode - Negative prompt - [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) style tokenizer (not all the features, only token weighting for now) - Sampling method - `Euler A` - `Euler` - `Heun` - `DPM2` - `DPM++ 2M` - [`DPM++ 2M v2`](https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/8457) - `DPM++ 2S a` - Cross-platform reproducibility (`--rng cuda`, consistent with the `stable-diffusion-webui GPU RNG`) - Embedds generation parameters into png output as webui-compatible text string - Supported platforms - Linux - Mac OS - Windows - Android (via Termux) ### TODO - [ ] More sampling methods - [ ] GPU support - [ ] Make inference faster - The current implementation of ggml_conv_2d is slow and has high memory usage - [ ] Continuing to reduce memory usage (quantizing the weights of ggml_conv_2d) - [ ] LoRA support - [ ] k-quants support ## Usage ### Get the Code ``` git clone --recursive https://github.com/leejet/stable-diffusion.cpp cd stable-diffusion.cpp ``` - If you have already cloned the repository, you can use the following command to update the repository to the latest code. ``` cd stable-diffusion.cpp git pull origin master git submodule init git submodule update ``` ### Convert weights - download original weights(.ckpt or .safetensors). For example - Stable Diffusion v1.4 from https://huggingface.co/CompVis/stable-diffusion-v-1-4-original - Stable Diffusion v1.5 from https://huggingface.co/runwayml/stable-diffusion-v1-5 - Stable Diffuison v2.1 from https://huggingface.co/stabilityai/stable-diffusion-2-1 ```shell curl -L -O https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt # curl -L -O https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors # curl -L -O https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-nonema-pruned.safetensors ``` - convert weights to ggml model format ```shell cd models pip install -r requirements.txt python convert.py [path to weights] --out_type [output precision] # For example, python convert.py sd-v1-4.ckpt --out_type f16 ``` ### Quantization You can specify the output model format using the --out_type parameter - `f16` for 16-bit floating-point - `f32` for 32-bit floating-point - `q8_0` for 8-bit integer quantization - `q5_0` or `q5_1` for 5-bit integer quantization - `q4_0` or `q4_1` for 4-bit integer quantization ### Build #### Build from scratch ```shell mkdir build cd build cmake .. cmake --build . --config Release ``` ##### Using OpenBLAS ``` cmake .. -DGGML_OPENBLAS=ON cmake --build . --config Release ``` ### Run ``` usage: ./bin/sd [arguments] arguments: -h, --help show this help message and exit -M, --mode [txt2img or img2img] generation mode (default: txt2img) -t, --threads N number of threads to use during computation (default: -1). If threads <= 0, then threads will be set to the number of CPU physical cores -m, --model [MODEL] path to model -i, --init-img [IMAGE] path to the input image, required by img2img -o, --output OUTPUT path to write result image to (default: .\output.png) -p, --prompt [PROMPT] the prompt to render -n, --negative-prompt PROMPT the negative prompt (default: "") --cfg-scale SCALE unconditional guidance scale: (default: 7.0) --strength STRENGTH strength for noising/unnoising (default: 0.75) 1.0 corresponds to full destruction of information in init image -H, --height H image height, in pixel space (default: 512) -W, --width W image width, in pixel space (default: 512) --sampling-method {euler, euler_a, heun, dpm++2m, dpm++2mv2} sampling method (default: "euler_a") --steps STEPS number of sample steps (default: 20) --rng {std_default, cuda} RNG (default: cuda) -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0) -v, --verbose print extra info ``` #### txt2img example ``` ./bin/sd -m ../models/sd-v1-4-ggml-model-f16.bin -p "a lovely cat" ``` Using formats of different precisions will yield results of varying quality. | f32 | f16 |q8_0 |q5_0 |q5_1 |q4_0 |q4_1 | | ---- |---- |---- |---- |---- |---- |---- | | ![](./assets/f32.png) |![](./assets/f16.png) |![](./assets/q8_0.png) |![](./assets/q5_0.png) |![](./assets/q5_1.png) |![](./assets/q4_0.png) |![](./assets/q4_1.png) | #### img2img example - `./output.png` is the image generated from the above txt2img pipeline ``` ./bin/sd --mode img2img -m ../models/sd-v1-4-ggml-model-f16.bin -p "cat with blue eyes" -i ./output.png -o ./img2img_output.png --strength 0.4 ```
### Docker #### Building using Docker ```shell docker build -t sd . ``` #### Run ```shell docker run -v /path/to/models:/models -v /path/to/output/:/output sd [args...] # For example # docker run -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4-ggml-model-f16.bin -p "a lovely cat" -v -o /output/output.png ``` ## Memory/Disk Requirements | precision | f32 | f16 |q8_0 |q5_0 |q5_1 |q4_0 |q4_1 | | ---- | ---- |---- |---- |---- |---- |---- |---- | | **Disk** | 2.7G | 2.0G | 1.7G | 1.6G | 1.6G | 1.5G | 1.5G | | **Memory**(txt2img - 512 x 512) | ~2.8G | ~2.3G | ~2.1G | ~2.0G | ~2.0G | ~2.0G | ~2.0G | ## References - [ggml](https://github.com/ggerganov/ggml) - [stable-diffusion](https://github.com/CompVis/stable-diffusion) - [stable-diffusion-stability-ai](https://github.com/Stability-AI/stablediffusion) - [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) - [k-diffusion](https://github.com/crowsonkb/k-diffusion)