|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- gu |
|
- mr |
|
- hi |
|
--- |
|
# Model Card for Model ID |
|
|
|
|
|
## Model Details |
|
The technique of marking the words in a phrase to their appropriate POS |
|
tags is known as part-of-speech tagging (POS tagging or POST). There are |
|
two sorts of POS tagging algorithms: rule-based and stochastic, and |
|
monolingual and multilingual are different types from a modelling |
|
standpoint. POS tags provide grammatical context to a sentence, which can |
|
be employed in NLP tasks such as NER, NLU and QNA systems. |
|
In this research field, a lot of researchers had already tried to propose |
|
various novel approaches, tags and models like Weightless Artificial |
|
Neural Network (WANN), different forms of CRF, Bi-LSTM CRF, and |
|
transformers, various techniques for language tag mixed POS tags to |
|
handle mixed languages. All this research work leads to the enhancement |
|
or creating a benchmark for different popular and low resource languages, |
|
In the state of monolingual or multilingual context. In this model |
|
we are trying to achieve state-of-the-art model for the Indian language |
|
context in both native and its Romanised format. |
|
|
|
### Model Description |
|
|
|
The model has been trained on the romanized forms of the Indian languages as well as English, Hindi, Gujarati, and Marathi.i.e(en,gu,mr,hi,gu_romanised,mr_romanised,hi_romanised) |
|
To use this model you have import this class |
|
|
|
```commandline |
|
from transformers import BertPreTrainedModel, BertModel |
|
from transformers.modeling_outputs import TokenClassifierOutput |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
import torch |
|
|
|
from torchcrf import CRF |
|
from transformers import BertTokenizerFast |
|
from transformers import BertTokenizerFast, Trainer, TrainingArguments |
|
from transformers.trainer_utils import IntervalStrategy |
|
|
|
class BertCRF(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
self.crf = CRF(num_tags=config.num_labels, batch_first=True) |
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - |
|
1]``. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
log_likelihood, tags = self.crf(logits, labels), self.crf.decode(logits) |
|
loss = 0 - log_likelihood |
|
else: |
|
tags = self.crf.decode(logits) |
|
tags = torch.Tensor(tags) |
|
|
|
if not return_dict: |
|
output = (tags,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return loss, tags |
|
``` |
|
Some sample output from the model |
|
|
|
This model uses a different kind of labelling system from it will not only be able to detect language, as well as it can detect the POS of the respective language |
|
|
|
| Types | Output | |
|
|--------------------|-------------------------------------------------------------------------------------------------------------------| |
|
| English | [{'words': ['my', 'name', 'is', 'swagat'], 'labels': ['en-DET', 'enNN', 'en-VB', 'en-NN']}] | |
|
| Hindi | [{'words': ['मेरा', 'नाम', 'स्वागत', 'है'], 'labels': ['hi-PRP', 'hi-NN', 'hi-NNP', 'hi-VM']}] | |
|
| Hindi Romanised | [{'words': ['mera', 'naam', 'swagat', 'hai'], 'labels': ['hi_romPRP', 'hi_rom-NN', 'hi_rom-NNP', 'hi_rom-VM']}] | |
|
| Gujarati | [{'words': ['મારું', 'નામ', 'સ્વગત', 'છે'], 'labels': ['gu-PRP', 'guNN', 'gu-NNP', 'gu-VAUX']}] | |
|
| Gujarati Romanised | [{'words': ['maru', 'naam', 'swagat', 'che'], 'labels': ['gu_romPRP', 'gu_rom-NN', 'gu_rom-NNP', 'gu_rom-VAUX']}] | |
|
|
|
|
|
- **Developed by:** Swagat Panda |
|
- **Finetuned from model :** google/muril-base-cased |
|
|
|
### Model Sources |
|
- **Paper :** https://www.academia.edu/87916386/MULTILINGUAL_APPROACH_TOWARDS_THE_NATIVE_AND_ROMANISED_SCRIPTS_FOR_INDIAN_LANGUGE_CONTEXT_ON_POS_TAGGING?source=swp_share |
|
|
|
|