---
license: llama2
language:
- it
tags:
- text-generation-inference
---
# Model Card for LLaMAntino-2-chat-7b-UltraChat-ITA
## Model description
**LLaMAntino-2-chat-7b-UltraChat** is a *Large Language Model (LLM)* that is an instruction-tuned version of **LLaMAntino-2-chat-7b** (an italian-adapted **LLaMA 2 chat**).
This model aims to provide Italian NLP researchers with an improved model for italian dialogue use cases.
The model was trained using *QLora* and using as training data [UltraChat](https://github.com/thunlp/ultrachat) translated to the italian language using [Argos Translate](https://pypi.org/project/argostranslate/1.4.0/).
If you are interested in more details regarding the training procedure, you can find the code we used at the following link:
- **Repository:** https://github.com/swapUniba/LLaMAntino
**NOTICE**: the code has not been released yet, we apologize for the delay, it will be available asap!
- **Developed by:** Pierpaolo Basile, Elio Musacchio, Marco Polignano, Lucia Siciliani, Giuseppe Fiameni, Giovanni Semeraro
- **Funded by:** PNRR project FAIR - Future AI Research
- **Compute infrastructure:** [Leonardo](https://www.hpc.cineca.it/systems/hardware/leonardo/) supercomputer
- **Model type:** LLaMA-2-chat
- **Language(s) (NLP):** Italian
- **License:** Llama 2 Community License
- **Finetuned from model:** [swap-uniba/LLaMAntino-2-chat-7b-hf-ITA](https://huggingface.co/swap-uniba/LLaMAntino-2-chat-7b-hf-ITA)
## Prompt Format
This prompt format based on the [LLaMA 2 prompt template](https://gpus.llm-utils.org/llama-2-prompt-template/) adapted to the italian language was used:
```python
"[INST] <>\n" \
"Sei un assistente disponibile, rispettoso e onesto. " \
"Rispondi sempre nel modo piu' utile possibile, pur essendo sicuro. " \
"Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. " \
"Assicurati che le tue risposte siano socialmente imparziali e positive. " \
"Se una domanda non ha senso o non e' coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. " \
"Se non conosci la risposta a una domanda, non condividere informazioni false.\n" \
"<>\n\n" \
f"{user_msg_1} [/INST] {model_answer_1} [INST] {user_msg_2} [/INST] {model_answer_2} ... [INST] {user_msg_N} [/INST] {model_answer_N} "
```
We recommend using the same prompt in inference to obtain the best results!
## How to Get Started with the Model
Below you can find an example of model usage:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "swap-uniba/LLaMAntino-2-chat-7b-hf-UltraChat-ITA"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
user_msg = "Ciao! Come stai?"
prompt = "[INST] <>\n" \
"Sei un assistente disponibile, rispettoso e onesto. " \
"Rispondi sempre nel modo piu' utile possibile, pur essendo sicuro. " \
"Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. " \
"Assicurati che le tue risposte siano socialmente imparziali e positive. " \
"Se una domanda non ha senso o non e' coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. " \
"Se non conosci la risposta a una domanda, non condividere informazioni false.\n" \
"<>\n\n" \
f"{user_msg} [/INST] "
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
outputs = model.generate(input_ids=input_ids, max_length=1024)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy()[:, input_ids.shape[1]:], skip_special_tokens=True)[0])
```
If you are facing issues when loading the model, you can try to load it quantized:
```python
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True)
```
*Note*: The model loading strategy above requires the [*bitsandbytes*](https://pypi.org/project/bitsandbytes/) and [*accelerate*](https://pypi.org/project/accelerate/) libraries
## Evaluation
*Coming soon*!
## Citation
If you use this model in your research, please cite the following:
```bibtex
@misc{basile2023llamantino,
title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language},
author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro},
year={2023},
eprint={2312.09993},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```