m-polignano-uniba
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -24,12 +24,6 @@ license: llama3
|
|
24 |
<hr>
|
25 |
<!--<img src="https://i.ibb.co/6mHSRm3/llamantino53.jpg" width="200"/>-->
|
26 |
|
27 |
-
## Model Details
|
28 |
-
*Last Update: 29/04/2024*<br>
|
29 |
-
*GitHub Link* → [https://github.com/marcopoli/LLaMAntino-3-ANITA](https://github.com/marcopoli/LLaMAntino-3-ANITA)<br>
|
30 |
-
|
31 |
-
<hr>
|
32 |
-
|
33 |
**LLaMAntino-3-ANITA-8B-sft-DPO** is a model of the [**LLaMAntino**](https://huggingface.co/swap-uniba) - *Large Language Models family*.
|
34 |
The model is an instruction-tuned version of [**Meta-Llama-3-8b-instruct**](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) (a fine-tuned **LLaMA 3 model**).
|
35 |
This model version aims to be the **Multilingual Base-Model** 🏁 to further fine-tune in the Italian environment.
|
@@ -40,14 +34,22 @@ wants to provide Italian NLP researchers with an improved model the for Italian
|
|
40 |
|
41 |
<hr>
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
## Specifications
|
44 |
|
45 |
-
- **Model developers**: Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy
|
46 |
-
- **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA
|
47 |
- **Input**: Models input text only.
|
48 |
- **Output**: Models generate text and code only.
|
49 |
- **Model Architecture**: *Llama 3 architecture*.
|
50 |
- **Context length**: 8K, 8192.
|
|
|
51 |
<hr>
|
52 |
|
53 |
## Playground
|
@@ -74,7 +76,7 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
74 |
AutoTokenizer,
|
75 |
)
|
76 |
|
77 |
-
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-
|
78 |
model = AutoModelForCausalLM.from_pretrained(
|
79 |
base_model,
|
80 |
torch_dtype=torch.bfloat16,
|
@@ -83,8 +85,10 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
83 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
84 |
|
85 |
messages = [
|
86 |
-
{"role": "system", "content": "
|
87 |
-
|
|
|
|
|
88 |
]
|
89 |
|
90 |
#Method 1
|
@@ -92,7 +96,7 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
92 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
93 |
for k,v in inputs.items():
|
94 |
inputs[k] = v.cuda()
|
95 |
-
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.
|
96 |
results = tokenizer.batch_decode(outputs)[0]
|
97 |
print(results)
|
98 |
|
@@ -104,9 +108,9 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
104 |
return_full_text=False, # langchain expects the full text
|
105 |
task='text-generation',
|
106 |
max_new_tokens=512, # max number of tokens to generate in the output
|
107 |
-
temperature=0.
|
108 |
do_sample=True,
|
109 |
-
top_p=0.
|
110 |
)
|
111 |
|
112 |
sequences = pipe(messages)
|
@@ -125,7 +129,7 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
125 |
BitsAndBytesConfig,
|
126 |
)
|
127 |
|
128 |
-
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-
|
129 |
bnb_config = BitsAndBytesConfig(
|
130 |
load_in_4bit=True,
|
131 |
bnb_4bit_quant_type="nf4",
|
@@ -140,8 +144,10 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
140 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
141 |
|
142 |
messages = [
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
]
|
146 |
|
147 |
#Method 1
|
@@ -149,7 +155,7 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
149 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
150 |
for k,v in inputs.items():
|
151 |
inputs[k] = v.cuda()
|
152 |
-
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.
|
153 |
results = tokenizer.batch_decode(outputs)[0]
|
154 |
print(results)
|
155 |
|
@@ -161,9 +167,9 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
161 |
return_full_text=False, # langchain expects the full text
|
162 |
task='text-generation',
|
163 |
max_new_tokens=512, # max number of tokens to generate in the output
|
164 |
-
temperature=0.
|
165 |
do_sample=True,
|
166 |
-
top_p=0.
|
167 |
)
|
168 |
|
169 |
sequences = pipe(messages)
|
@@ -187,7 +193,7 @@ For direct use with `unsloth`, you can easily get started with the following ste
|
|
187 |
from unsloth import FastLanguageModel
|
188 |
import torch
|
189 |
|
190 |
-
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-
|
191 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
192 |
model_name = base_model,
|
193 |
max_seq_length = 8192,
|
@@ -200,14 +206,16 @@ For direct use with `unsloth`, you can easily get started with the following ste
|
|
200 |
- Right now, you can start using the model directly.
|
201 |
```python
|
202 |
messages = [
|
203 |
-
{"role": "system", "content": "
|
204 |
-
|
|
|
|
|
205 |
]
|
206 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
207 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
208 |
for k,v in inputs.items():
|
209 |
inputs[k] = v.cuda()
|
210 |
-
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.
|
211 |
results = tokenizer.batch_decode(outputs)[0]
|
212 |
print(results)
|
213 |
```
|
|
|
24 |
<hr>
|
25 |
<!--<img src="https://i.ibb.co/6mHSRm3/llamantino53.jpg" width="200"/>-->
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
**LLaMAntino-3-ANITA-8B-sft-DPO** is a model of the [**LLaMAntino**](https://huggingface.co/swap-uniba) - *Large Language Models family*.
|
28 |
The model is an instruction-tuned version of [**Meta-Llama-3-8b-instruct**](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) (a fine-tuned **LLaMA 3 model**).
|
29 |
This model version aims to be the **Multilingual Base-Model** 🏁 to further fine-tune in the Italian environment.
|
|
|
34 |
|
35 |
<hr>
|
36 |
|
37 |
+
## Model Details
|
38 |
+
*Last Update: 10/05/2024*<br>
|
39 |
+
|
40 |
+
<img src="https://static.vecteezy.com/system/resources/previews/016/833/880/large_2x/github-logo-git-hub-icon-with-text-on-white-background-free-vector.jpg" width="200"> [https://github.com/marcopoli/LLaMAntino-3-ANITA](https://github.com/marcopoli/LLaMAntino-3-ANITA)<br>
|
41 |
+
|
42 |
+
<hr>
|
43 |
+
|
44 |
## Specifications
|
45 |
|
46 |
+
- **Model developers**: Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy - SWAP Research Group
|
47 |
+
- **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA** 4bit, on two instruction-based datasets. **DPO** approach over the *jondurbin/truthy-dpo-v0.1* dataset is used to align with human preferences for helpfulness and safety.
|
48 |
- **Input**: Models input text only.
|
49 |
- **Output**: Models generate text and code only.
|
50 |
- **Model Architecture**: *Llama 3 architecture*.
|
51 |
- **Context length**: 8K, 8192.
|
52 |
+
- **Library Used**: [Unsloth](https://unsloth.ai/)
|
53 |
<hr>
|
54 |
|
55 |
## Playground
|
|
|
76 |
AutoTokenizer,
|
77 |
)
|
78 |
|
79 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Instr-DPO-ITA"
|
80 |
model = AutoModelForCausalLM.from_pretrained(
|
81 |
base_model,
|
82 |
torch_dtype=torch.bfloat16,
|
|
|
85 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
86 |
|
87 |
messages = [
|
88 |
+
{"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
|
89 |
+
(Advanced Natural-based interaction for the ITAlian language). \
|
90 |
+
Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
|
91 |
+
{"role": "user", "content": "Why is the sky blue?"}
|
92 |
]
|
93 |
|
94 |
#Method 1
|
|
|
96 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
97 |
for k,v in inputs.items():
|
98 |
inputs[k] = v.cuda()
|
99 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
|
100 |
results = tokenizer.batch_decode(outputs)[0]
|
101 |
print(results)
|
102 |
|
|
|
108 |
return_full_text=False, # langchain expects the full text
|
109 |
task='text-generation',
|
110 |
max_new_tokens=512, # max number of tokens to generate in the output
|
111 |
+
temperature=0.6, #temperature for more or less creative answers
|
112 |
do_sample=True,
|
113 |
+
top_p=0.9,
|
114 |
)
|
115 |
|
116 |
sequences = pipe(messages)
|
|
|
129 |
BitsAndBytesConfig,
|
130 |
)
|
131 |
|
132 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Instr-DPO-ITA"
|
133 |
bnb_config = BitsAndBytesConfig(
|
134 |
load_in_4bit=True,
|
135 |
bnb_4bit_quant_type="nf4",
|
|
|
144 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
145 |
|
146 |
messages = [
|
147 |
+
{"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
|
148 |
+
(Advanced Natural-based interaction for the ITAlian language). \
|
149 |
+
Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
|
150 |
+
{"role": "user", "content": "Why is the sky blue?"}
|
151 |
]
|
152 |
|
153 |
#Method 1
|
|
|
155 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
156 |
for k,v in inputs.items():
|
157 |
inputs[k] = v.cuda()
|
158 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
|
159 |
results = tokenizer.batch_decode(outputs)[0]
|
160 |
print(results)
|
161 |
|
|
|
167 |
return_full_text=False, # langchain expects the full text
|
168 |
task='text-generation',
|
169 |
max_new_tokens=512, # max number of tokens to generate in the output
|
170 |
+
temperature=0.6, #temperature for more or less creative answers
|
171 |
do_sample=True,
|
172 |
+
top_p=0.9,
|
173 |
)
|
174 |
|
175 |
sequences = pipe(messages)
|
|
|
193 |
from unsloth import FastLanguageModel
|
194 |
import torch
|
195 |
|
196 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Instr-DPO-ITA"
|
197 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
198 |
model_name = base_model,
|
199 |
max_seq_length = 8192,
|
|
|
206 |
- Right now, you can start using the model directly.
|
207 |
```python
|
208 |
messages = [
|
209 |
+
{"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
|
210 |
+
(Advanced Natural-based interaction for the ITAlian language). \
|
211 |
+
Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
|
212 |
+
{"role": "user", "content": "Why is the sky blue?"}
|
213 |
]
|
214 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
215 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
216 |
for k,v in inputs.items():
|
217 |
inputs[k] = v.cuda()
|
218 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
|
219 |
results = tokenizer.batch_decode(outputs)[0]
|
220 |
print(results)
|
221 |
```
|