--- datasets: - gsarti/clean_mc4_it - Chat-Error/wizard_alpaca_dolly_orca base_model: meta-llama/Meta-Llama-3-8B-Instruct model_creator: Marco Polignano - SWAP Research Group language: - en - it metrics: - accuracy pipeline_tag: text-generation tags: - facebook - meta - pythorch - llama - llama-3 - llamantino license: llama3 --- llamantino3_anita
## Model Details *Last Update: 29/04/2024*
*GitHub Link* → [https://github.com/marcopoli/LLaMAntino-3-ANITA](https://github.com/marcopoli/LLaMAntino-3-ANITA)

**LLaMAntino-3-ANITA-8B-sft-DPO** is a model of the [**LLaMAntino**](https://huggingface.co/swap-uniba) - *Large Language Models family*. The model is an instruction-tuned version of [**Meta-Llama-3-8b-instruct**](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) (a fine-tuned **LLaMA 3 model**). This model version aims to be the **Multilingual Base-Model** 🏁 to further fine-tune in the Italian environment. The 🌟**ANITA project**🌟 *(**A**dvanced **N**atural-based interaction for the **ITA**lian language)* wants to provide Italian NLP researchers with an improved model the for Italian Language 🇮🇹 use cases.
## Specifications - **Model developers**: Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy - **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA**, on a long list of instruction-based datasets. **DPO** approach over the *HuggingFaceH4/ultrafeedback_binarized* dataset is used to align with human preferences for helpfulness and safety. - **Input**: Models input text only. - **Output**: Models generate text and code only. - **Model Architecture**: *Llama 3 architecture*. - **Context length**: 8K, 8192.
## Playground To use the model directly, there are many ways to get started, choose one of the following ways to experience it. ### Transformers For direct use with `transformers`, you can easily get started with the following steps. - Firstly, you need to install transformers via the command below with `pip`. ```bash pip install -U transformers ``` - Right now, you can start using the model directly. ```python import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, ) base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO" model = AutoModelForCausalLM.from_pretrained( base_model, torch_dtype=torch.bfloat16, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(base_model) messages = [ {"role": "system", "content": "Answer clearly and detailed."}, {"role": "user", "content": "Why is the sky blue ?"} ] #Method 1 prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False) for k,v in inputs.items(): inputs[k] = v.cuda() outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.85, temperature=0.7) results = tokenizer.batch_decode(outputs)[0] print(results) #Method 2 import transformers pipe = transformers.pipeline( model=model, tokenizer=tokenizer, return_full_text=False, # langchain expects the full text task='text-generation', max_new_tokens=512, # max number of tokens to generate in the output temperature=0.7, #temperature for more or less creative answers do_sample=True, top_p=0.85, ) sequences = pipe(messages) for seq in sequences: print(f"{seq['generated_text']}") ``` - Additionally, you can also use a model with **4bit quantization** to reduce the required resources at least. You can start with the code below. ```python import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb_config, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(base_model) messages = [ {"role": "system", "content": "Answer clearly and detailed."}, {"role": "user", "content": "Why is the sky blue ?"} ] #Method 1 prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False) for k,v in inputs.items(): inputs[k] = v.cuda() outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.85, temperature=0.7) results = tokenizer.batch_decode(outputs)[0] print(results) #Method 2 import transformers pipe = transformers.pipeline( model=model, tokenizer=tokenizer, return_full_text=False, # langchain expects the full text task='text-generation', max_new_tokens=512, # max number of tokens to generate in the output temperature=0.7, #temperature for more or less creative answers do_sample=True, top_p=0.85, ) sequences = pipe(messages) for seq in sequences: print(f"{seq['generated_text']}") ``` ### Unsloth For direct use with `unsloth`, you can easily get started with the following steps. - Firstly, you need to install unsloth via the command below with `pip`. ```bash pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" pip install --no-deps xformers trl peft accelerate bitsandbytes ``` - Initialize and optimize the model before use. ```python from unsloth import FastLanguageModel import torch base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO" model, tokenizer = FastLanguageModel.from_pretrained( model_name = base_model, max_seq_length = 8192, dtype = None, load_in_4bit = True, # Change to `False` if you don't want to use 4bit quantization. ) FastLanguageModel.for_inference(model) ``` - Right now, you can start using the model directly. ```python messages = [ {"role": "system", "content": "Answer clearly and detailed."}, {"role": "user", "content": "Why is the sky blue ?"} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False) for k,v in inputs.items(): inputs[k] = v.cuda() outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.85, temperature=0.7) results = tokenizer.batch_decode(outputs)[0] print(results) ```
## Unsloth [Unsloth](https://unsloth.ai), a great tool that helps us easily develop products, at a lower cost than expected. ## Citation instructions ```bibtex @misc{basile2023llamantino, title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language}, author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro}, year={2023}, eprint={2312.09993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ```