File size: 3,132 Bytes
a6fdcf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: llama3
language:
- it
base_model:
- meta-llama/Meta-Llama-3-8B
- openai/clip-vit-large-patch14-336
pipeline_tag: text-generation
---
# Model Card for LLaVA-NDiNO_long
## Model description
<!-- Provide a quick summary of what the model is/does. -->
**LLaVA-NDiNO** is a family of *Large Vision Language Models (LVLMs)* that have been trained for the Italian language.
The model was trained by instruction-tuning [**LLaMA 3 8B Base**](https://huggingface.co/meta-llama/Meta-Llama-3-8B) and [**CLIP Large 336**](https://huggingface.co/openai/clip-vit-large-patch14-336) on an Italian machine-translated version of [LLaVA Conversation 58k](https://huggingface.co/datasets/jxu124/llava_conversation_58k).
If you are interested in more details regarding the training procedure, you can find the code we used at the following link:
- **Repository:** https://github.com/swapUniba/LLaVA-NDiNO
- **Developed by:** Elio Musacchio, Lucia Siciliani, Pierpaolo Basile, Giovanni Semeraro
- **Funded by:** PNRR project FAIR - Future AI Research
- **Compute infrastructure:** [Leonardo](https://www.hpc.cineca.it/systems/hardware/leonardo/) supercomputer
- **Model type:** LLaMA 3 + CLIP
- **Language(s) (NLP):** Italian
- **License:** Llama 3 Community License
## Example Usage
```python
import torch
import requests
from PIL import Image
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, set_seed
model_name = "swap-uniba/LLaVA-NDiNO_long"
processor = LlavaNextProcessor.from_pretrained(model_name)
model = LlavaNextForConditionalGeneration.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
url = "https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw)
chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}"
conversation = [
{
"role": "user",
"content": "<image>\nCosa c'è di strano in questa immagine?"
},
]
prompt = processor.apply_chat_template(conversation, chat_template, add_generation_prompt=True)
inputs = processor(prompt, image, return_tensors="pt")
set_seed(42)
output = model.generate(**inputs, max_new_tokens=4096)
print(processor.decode(output[0][inputs.input_ids.shape[1]:]))
```
## Citation
```
@inproceedings{musacchioLLaVANDiNO,
title={LLaVA-NDiNO: Empowering LLMs with Multimodality for the Italian Language},
author={Musacchio, Elio and Siciliani, Lucia and Basile, Pierpaolo and Semeraro, Giovanni},
booktitle={Proceedings of the Eighth Workshop on Natural Language for Artificial Intelligence (NL4AI 2024) co-located with 23th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2024)},
year={2024}
}
``` |