updated
Browse files
README.md
CHANGED
@@ -22,3 +22,54 @@ model-index:
|
|
22 |
type: wer
|
23 |
value: 24.17
|
24 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
type: wer
|
23 |
value: 24.17
|
24 |
---
|
25 |
+
|
26 |
+
# hindi-clsril-100
|
27 |
+
|
28 |
+
Fine-tuned [Harveenchadha/wav2vec2-pretrained-clsril-23-10k](https://huggingface.co/Harveenchadha/wav2vec2-pretrained-clsril-23-10k) on Hindi using the [Common Voice](https://huggingface.co/datasets/common_voice), included [openSLR](http://www.openslr.org/103/) Hindi dataset.
|
29 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
30 |
+
|
31 |
+
## Evaluation
|
32 |
+
The model can be used directly (with or without a language model) as follows:
|
33 |
+
|
34 |
+
```python
|
35 |
+
#!pip install datasets==1.4.1
|
36 |
+
#!pip install transformers==4.4.0
|
37 |
+
#!pip install torchaudio
|
38 |
+
#!pip install jiwer
|
39 |
+
|
40 |
+
import torch
|
41 |
+
import torchaudio
|
42 |
+
from datasets import load_dataset
|
43 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM
|
44 |
+
|
45 |
+
test_dataset = load_dataset("common_voice", "hi", split="test")
|
46 |
+
wer = load_metric("wer")
|
47 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\�\।\']'
|
48 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
49 |
+
# We need to read the audio files as arrays
|
50 |
+
def speech_file_to_array_fn(batch):
|
51 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
return batch
|
55 |
+
|
56 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
+
|
58 |
+
def evaluate(batch):
|
59 |
+
inputs = processor_with_lm(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
+
with torch.no_grad():
|
61 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
62 |
+
batch["pred_strings"] = transcription = processor_with_lm.batch_decode(logits.numpy()).text
|
63 |
+
return batch
|
64 |
+
|
65 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
66 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
67 |
+
```
|
68 |
+
|
69 |
+
**Test Result**: 24.17 %
|
70 |
+
|
71 |
+
## Training
|
72 |
+
|
73 |
+
The Common Voice hi `train`, `validation` were used for training, as well as openSLR hi `train`, `validation` and `test` datasets.
|
74 |
+
|
75 |
+
The script used for training can be found here [colab](https://colab.research.google.com/drive/1YL_csb3LRjqWybeyvQhZ-Hem2dtpvq_x?usp=sharing)
|