Update README.md
Browse files
README.md
CHANGED
@@ -1,24 +1,3 @@
|
|
1 |
-
# Skin Cancer Detection Model
|
2 |
-
|
3 |
-
This model is trained to detect different types of skin cancer from images using the HAM10000 dataset. The model predicts seven types of skin cancer:
|
4 |
-
|
5 |
-
- **akiec**: Actinic Keratoses and Intraepithelial Carcinoma
|
6 |
-
- **bcc**: Basal Cell Carcinoma
|
7 |
-
- **bkl**: Benign Keratosis
|
8 |
-
- **df**: Dermatofibroma
|
9 |
-
- **nv**: Melanocytic Nevus
|
10 |
-
- **vasc**: Vascular Lesions
|
11 |
-
- **mel**: Melanoma
|
12 |
-
|
13 |
-
## Model Information
|
14 |
-
The model is a convolutional neural network (CNN) built with TensorFlow and Keras, trained on the HAM10000 dataset.
|
15 |
-
|
16 |
-
## Usage
|
17 |
-
You can use this model in Python by loading it via `keras` or `tensorflow`.
|
18 |
-
|
19 |
-
```python
|
20 |
-
from tensorflow.keras.models import load_model
|
21 |
-
model = load_model('path_to_model.h5')
|
22 |
|
23 |
---
|
24 |
tags:
|
@@ -47,4 +26,24 @@ model-index:
|
|
47 |
value: 0.73
|
48 |
---
|
49 |
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
---
|
3 |
tags:
|
|
|
26 |
value: 0.73
|
27 |
---
|
28 |
|
29 |
+
# Skin Cancer Detection Model
|
30 |
+
|
31 |
+
This model is trained to detect different types of skin cancer from images using the HAM10000 dataset. The model predicts seven types of skin cancer:
|
32 |
|
33 |
+
- **akiec**: Actinic Keratoses and Intraepithelial Carcinoma
|
34 |
+
- **bcc**: Basal Cell Carcinoma
|
35 |
+
- **bkl**: Benign Keratosis
|
36 |
+
- **df**: Dermatofibroma
|
37 |
+
- **nv**: Melanocytic Nevus
|
38 |
+
- **vasc**: Vascular Lesions
|
39 |
+
- **mel**: Melanoma
|
40 |
+
|
41 |
+
## Model Information
|
42 |
+
The model is a convolutional neural network (CNN) built with TensorFlow and Keras, trained on the HAM10000 dataset.
|
43 |
+
|
44 |
+
## Usage
|
45 |
+
You can use this model in Python by loading it via `keras` or `tensorflow`.
|
46 |
+
|
47 |
+
```python
|
48 |
+
from tensorflow.keras.models import load_model
|
49 |
+
model = load_model('path_to_model.h5')
|