syaha commited on
Commit
3a2213e
·
verified ·
1 Parent(s): c40a600

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -21
README.md CHANGED
@@ -1,24 +1,3 @@
1
- # Skin Cancer Detection Model
2
-
3
- This model is trained to detect different types of skin cancer from images using the HAM10000 dataset. The model predicts seven types of skin cancer:
4
-
5
- - **akiec**: Actinic Keratoses and Intraepithelial Carcinoma
6
- - **bcc**: Basal Cell Carcinoma
7
- - **bkl**: Benign Keratosis
8
- - **df**: Dermatofibroma
9
- - **nv**: Melanocytic Nevus
10
- - **vasc**: Vascular Lesions
11
- - **mel**: Melanoma
12
-
13
- ## Model Information
14
- The model is a convolutional neural network (CNN) built with TensorFlow and Keras, trained on the HAM10000 dataset.
15
-
16
- ## Usage
17
- You can use this model in Python by loading it via `keras` or `tensorflow`.
18
-
19
- ```python
20
- from tensorflow.keras.models import load_model
21
- model = load_model('path_to_model.h5')
22
 
23
  ---
24
  tags:
@@ -47,4 +26,24 @@ model-index:
47
  value: 0.73
48
  ---
49
 
 
 
 
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  ---
3
  tags:
 
26
  value: 0.73
27
  ---
28
 
29
+ # Skin Cancer Detection Model
30
+
31
+ This model is trained to detect different types of skin cancer from images using the HAM10000 dataset. The model predicts seven types of skin cancer:
32
 
33
+ - **akiec**: Actinic Keratoses and Intraepithelial Carcinoma
34
+ - **bcc**: Basal Cell Carcinoma
35
+ - **bkl**: Benign Keratosis
36
+ - **df**: Dermatofibroma
37
+ - **nv**: Melanocytic Nevus
38
+ - **vasc**: Vascular Lesions
39
+ - **mel**: Melanoma
40
+
41
+ ## Model Information
42
+ The model is a convolutional neural network (CNN) built with TensorFlow and Keras, trained on the HAM10000 dataset.
43
+
44
+ ## Usage
45
+ You can use this model in Python by loading it via `keras` or `tensorflow`.
46
+
47
+ ```python
48
+ from tensorflow.keras.models import load_model
49
+ model = load_model('path_to_model.h5')