Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,51 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
widget:
|
4 |
+
- text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?"
|
5 |
+
example_title: "Dialog example 1"
|
6 |
+
- text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм"
|
7 |
+
example_title: "Dialog example 2"
|
8 |
+
- text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?"
|
9 |
+
example_title: "Dialog example 3"
|
10 |
---
|
11 |
+
|
12 |
+
This classification model is based on [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence).
|
13 |
+
The model should be used to produce relevance and specificity of the last message in the context of a dialogue.
|
14 |
+
|
15 |
+
The labels explanation:
|
16 |
+
- `relevance`: is the last message in the dialogue relevant in the context of the full dialogue.
|
17 |
+
- `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue.
|
18 |
+
|
19 |
+
It is pretrained on a large corpus of dialog data in unsupervised manner: the model is trained to predict whether last response was in a real dialog, or it was pulled from some other dialog at random.
|
20 |
+
Then it was finetuned on manually labelled examples (dataset will be posted soon).
|
21 |
+
|
22 |
+
The model was trained with three messages in the context and one response. Each message was tokenized separately with ``` max_length = 32 ```.
|
23 |
+
|
24 |
+
The performance of the model on validation split (dataset will be posted soon) (with the best thresholds for validation samples):
|
25 |
+
|
26 |
+
|
27 |
+
| | threshold | f0.5 | ROC AUC |
|
28 |
+
|:------------|------------:|-------:|----------:|
|
29 |
+
| relevance | 0.49 | 0.84 | 0.79 |
|
30 |
+
| specificity | 0.53 | 0.83 | 0.83 |
|
31 |
+
|
32 |
+
|
33 |
+
How to use:
|
34 |
+
|
35 |
+
```python
|
36 |
+
pip install transformers
|
37 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
38 |
+
import torch
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-base')
|
40 |
+
model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-base')
|
41 |
+
model.cuda()
|
42 |
+
inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt')
|
43 |
+
with torch.inference_mode():
|
44 |
+
logits = model(**inputs).logits
|
45 |
+
probas = torch.sigmoid(logits)[0].cpu().detach().numpy()
|
46 |
+
relevance, specificity = probas
|
47 |
+
```
|
48 |
+
|
49 |
+
The [app](https://huggingface.co/spaces/tinkoff-ai/response-quality-classifiers) where you can easily interact with this model.
|
50 |
+
|
51 |
+
The work was done during internship at Tinkoff by [egoriyaa](https://github.com/egoriyaa), mentored by [solemn-leader](https://huggingface.co/solemn-leader).
|