Update README.md
Browse files
README.md
CHANGED
@@ -11,19 +11,41 @@ language:
|
|
11 |
|
12 |
T-lite-it-1.0 is a model built upon the Qwen 2.5 model family and incorporates both continual pre-training and alignment techniques.
|
13 |
|
14 |
-
Detailed model card’s coming soon…
|
15 |
-
|
16 |
### 📚 Dataset
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## 📊 Benchmarks
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
## 👨💻 Examples of usage
|
26 |
|
|
|
27 |
|
28 |
```python
|
29 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
@@ -84,4 +106,29 @@ Output:
|
|
84 |
Который ведёт к будущему, светлому и новому.
|
85 |
Машинное обученье — наш проводник,
|
86 |
В этом мире, где технологии царят.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
```
|
|
|
11 |
|
12 |
T-lite-it-1.0 is a model built upon the Qwen 2.5 model family and incorporates both continual pre-training and alignment techniques.
|
13 |
|
|
|
|
|
14 |
### 📚 Dataset
|
15 |
|
16 |
+
Pre-training Stage 1:
|
17 |
+
100B tokens, consisting of diverse Russian data from Common Crawl, books, code, and proprietary datasets, mixed with re-played English data (English added as it is the primary language of the base model).
|
18 |
+
|
19 |
+
Pre-training Stage 2:
|
20 |
+
40B tokens, a mix of instruction and pre-training data.
|
21 |
+
|
22 |
+
Supervised Fine-Tuning (SFT):
|
23 |
+
1B tokens, a mix of diverse instruction data.
|
24 |
+
|
25 |
+
Preference Tuning:
|
26 |
+
1B tokens, training the model to be helpful.
|
27 |
|
28 |
## 📊 Benchmarks
|
29 |
|
30 |
+
| Benchmark | T-lite-it-1.0 | Qwen-2.5-7B-Instruct | GigaChat Pro 1.0.26.15 | RuAdapt-Qwen-7B-Instruct-v1 | gemma-2-9b-it |
|
31 |
+
|------------------------------------------------|:-------------:|:--------------------:|:----------------------:|:---------------------------:|:--------------|
|
32 |
+
| [MERA](https://mera.a-ai.ru) | **0.552** | 0.482 | 0.512 | 0.468 | 0.505 |
|
33 |
+
| [MaMuRaMu](https://mera.a-ai.ru/ru/tasks/22) | **0.775** | 0.711 | 0.77 | 0.7 | 0.724 |
|
34 |
+
| ruMMLU-PRO | **0.497** | 0.481 | - | 0.448 | 0.405 |
|
35 |
+
| ruGSM8K | **0.856** | 0.832 | 0.752 | 0.795 | 0.823 |
|
36 |
+
| ruMATH | **0.679** | 0.671 | 0.418 | 0.607 | 0.473 |
|
37 |
+
| ruMBPP | **0.693** | 0.685 | 0.412 | 0.696 | 0.63 |
|
38 |
+
| [ruCodeEval](https://mera.a-ai.ru/ru/tasks/23) | 0.082 / 0.168 / 0.226 | 0.025 / 0.071 / 0.098 | 0.056 / 0.068 / 0.073 | 0.018 / 0.064 / 0.11 | **0.215 / 0.494 / 0.561** |
|
39 |
+
| Arena-Hard-Ru | **64.38** | 54.29 | - | 52.77 | 47.83 |
|
40 |
+
| MT Bench Ru | 7.87 | 7.33 | **8.21** | 7.62 | 7.4 |
|
41 |
+
| Alpaca Eval Ru | **39.61** | 25.61 | 29.83 | 28.43 | 36.87 |
|
42 |
+
|
43 |
+
Detailed evaluation results can be found in our [habr post](https://habr.com/ru/companies/tbank/articles/865582/)
|
44 |
|
45 |
|
46 |
## 👨💻 Examples of usage
|
47 |
|
48 |
+
### HF Usage
|
49 |
|
50 |
```python
|
51 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
106 |
Который ведёт к будущему, светлому и новому.
|
107 |
Машинное обученье — наш проводник,
|
108 |
В этом мире, где технологии царят.
|
109 |
+
```
|
110 |
+
|
111 |
+
### VLLM Usage
|
112 |
+
|
113 |
+
```python
|
114 |
+
from transformers import AutoTokenizer
|
115 |
+
from vllm import LLM, SamplingParams
|
116 |
+
|
117 |
+
model_name = "t-tech/T-lite-it-1.0"
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
119 |
+
llm = LLM(model=model_name)
|
120 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=8192)
|
121 |
+
|
122 |
+
prompt = "Напиши стих про машинное обучение"
|
123 |
+
messages = [
|
124 |
+
{"role": "system", "content": "Ты T-lite, виртуальный ассистент в Т-Технологии. Твоя задача - быть полезным диалоговым ассистентом."},
|
125 |
+
{"role": "user", "content": prompt}
|
126 |
+
]
|
127 |
+
|
128 |
+
prompt_token_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
129 |
+
|
130 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
131 |
+
|
132 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
133 |
+
print(generated_text)
|
134 |
```
|