from sympy import * | |
import sys | |
sys.path.append("..") | |
# # x^2\cdot \left(3\cdot \tan \left([!a!]\cdot x+[!c!]\right)+[!a!]\cdot x\left(\sec \left([!a!]\cdot x+[!c!]\right)\right)^2\right) | |
# latex1 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(\\sec \\left(2\\cdot x+5\\right)\\right)^2\\right)" | |
# math1 = process_sympy(latex1) | |
# print("latex: %s to math: %s" %(latex1,math1)) | |
# | |
# latex2 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(\\sec \\left(2\\cdot x+5\\right)^2\\right)\\right)" | |
# math2 = process_sympy(latex2) | |
# print("latex: %s to math: %s" %(latex2,math2)) | |
# | |
# latex3 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(1+\\tan \\left(2\\cdot x+5\\right)^2\\right)\\right)" | |
# math3 = process_sympy(latex3) | |
# print("latex: %s to math: %s" %(latex3,math3)) | |
# | |
# print(simplify(math1 - math2)) | |
# print(simplify(math1 - math3)) | |
# | |
# latex1 = "\\sec^2(2\\cdot x+5)" | |
# math1 = process_sympy(latex1) | |
# print("latex: %s to math: %s" %(latex1,math1)) | |
# | |
# latex2 = "1+\\tan^2(2\\cdot x+5)" | |
# math2 = process_sympy(latex2) | |
# print("latex: %s to math: %s" %(latex2,math2)) | |
# print(simplify(math1 - math2)) | |
x = Symbol('x', real=True) | |
y = Symbol('y', real=True) | |
# BUG: 1 + tan^2(x+1) should be == sec^2(x+1) but isnt | |
lhs = (1 + (tan(x + 1))**2) | |
rhs = (sec(x + 1))**2 | |
eq = lhs - rhs | |
print(simplify(lhs)) | |
print(simplify(rhs)) | |
print(simplify(eq)) | |
print(simplify(lhs) == simplify(rhs)) | |
# 1 + tan^2(x) == sec^2(x) but isnt | |
lhs = (1 + (tan(x))**2) | |
rhs = (sec(x))**2 | |
eq = lhs - rhs | |
print(simplify(lhs)) | |
print(simplify(rhs)) | |
print(simplify(eq)) | |
print(simplify(lhs) == simplify(rhs)) | |