darklight03's picture
eval (#6)
7f272e4 verified
raw
history blame
10.9 kB
"""
https://github.com/allenai/open-instruct
"""
import torch
import tqdm
from transformers import StoppingCriteria, StoppingCriteriaList
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords_str, tokenizer):
StoppingCriteria.__init__(self)
self.current_context = []
self.tokenizer = tokenizer
self.keywords_str = keywords_str
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if len(self.current_context) == 0:
self.current_context = [[] for _ in range(input_ids.shape[0])]
# self.current_context.append(input_ids[0][-1].item())
sequences_should_be_stopped = []
for i in range(input_ids.shape[0]):
_id = input_ids[i][-1].item()
self.current_context[i].append(_id)
current_context = self.tokenizer.decode(self.current_context[i])
should_be_stopped = False
for word in self.keywords_str:
if word in current_context:
should_be_stopped = True
break
sequences_should_be_stopped.append(should_be_stopped)
return all(sequences_should_be_stopped)
class KeyWordsCriteriaTrunc(StoppingCriteria):
def __init__(self, stop_id_sequences, prompt_length):
assert isinstance(stop_id_sequences[0], list), "stop_id_sequences should be a list of list of ids"
self.stop_sequences = stop_id_sequences
self.prompt_length = prompt_length
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
sequences_should_be_stopped = []
for i in range(input_ids.shape[0]):
ids = input_ids[i][self.prompt_length:].tolist()
should_be_stopped = False
for stop_sequence in self.stop_sequences:
if input_ids.shape[0] == 1:
_ids = ids[-len(stop_sequence):]
else:
_ids = ids
for j in range(len(_ids), 0, -len(stop_sequence)):
if _ids[max(j - len(stop_sequence), 0): j] == stop_sequence:
should_be_stopped = True
break
if should_be_stopped:
break
sequences_should_be_stopped.append(should_be_stopped)
return all(sequences_should_be_stopped)
class KeyWordsCriteria(StoppingCriteria):
def __init__(self, stop_id_sequences):
assert isinstance(stop_id_sequences[0], list), "stop_id_sequences should be a list of list of ids"
self.stop_sequences = stop_id_sequences
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
sequences_should_be_stopped = []
for i in range(input_ids.shape[0]):
sequence_should_be_stopped = False
for stop_sequence in self.stop_sequences:
if input_ids[i][-len(stop_sequence):].tolist() == stop_sequence:
sequence_should_be_stopped = True
break
sequences_should_be_stopped.append(sequence_should_be_stopped)
return all(sequences_should_be_stopped)
@torch.no_grad()
def generate_completions(model, tokenizer, prompts, batch_size=1, stop_id_sequences=None, add_special_tokens=True, disable_tqdm=False, **generation_kwargs):
generations = []
if not disable_tqdm:
progress = tqdm.tqdm(total=len(prompts), desc="Generating Completions")
num_return_sequences = generation_kwargs.get("num_return_sequences", 1)
for i in range(0, len(prompts), batch_size):
batch_prompts = prompts[i:i+batch_size]
tokenized_prompts = tokenizer(batch_prompts, padding="longest", return_tensors="pt", add_special_tokens=add_special_tokens)
batch_input_ids = tokenized_prompts.input_ids
attention_mask = tokenized_prompts.attention_mask
if model.device.type == "cuda":
batch_input_ids = batch_input_ids.cuda()
attention_mask = attention_mask.cuda()
# try:
stop_criteria = KeywordsStoppingCriteria(stop_id_sequences, tokenizer)
batch_outputs = model.generate(
input_ids=batch_input_ids,
attention_mask=attention_mask,
stopping_criteria=StoppingCriteriaList([stop_criteria]),
# stopping_criteria=[KeyWordsCriteria(stop_id_sequences)] if stop_id_sequences else None,
# stopping_criteria=[KeyWordsCriteriaTrunc(stop_id_sequences, batch_input_ids.size(1))] if stop_id_sequences else None,
**generation_kwargs
)
# the stopping criteria is applied at batch level, so if other examples are not stopped, the entire batch will continue to generate.
# so some outputs still have the stop sequence, which we need to remove.
# if stop_id_sequences:
# for output_idx in range(batch_outputs.shape[0]):
# for token_idx in range(batch_input_ids.shape[1], batch_outputs.shape[1]):
# if any(batch_outputs[output_idx, token_idx: token_idx+len(stop_sequence)].tolist() == stop_sequence for stop_sequence in stop_id_sequences):
# batch_outputs[output_idx, token_idx:] = tokenizer.pad_token_id
# break
# remove the prompt from the output
# we need to re-encode the prompt because we need to make sure the special tokens are treated the same way as in the outputs.
# we changed our previous way of truncating the output token ids dicrectly because some tokenizer (e.g., llama) won't add space token before the first token.
# space is important for some tasks (e.g., code completion).
batch_outputs = tokenizer.batch_decode(batch_outputs, skip_special_tokens=True)
batch_prompts = tokenizer.batch_decode(batch_input_ids, skip_special_tokens=True)
# duplicate the prompts to match the number of return sequences
batch_prompts = [prompt for prompt in batch_prompts for _ in range(num_return_sequences)]
batch_generations = [
output[len(prompt):] for prompt, output in zip(batch_prompts, batch_outputs)
]
# remove the remain stop sequence from the output.
for idx, prediction in enumerate(batch_generations):
for stop_sequence in stop_id_sequences:
batch_generations[idx] = prediction.split(stop_sequence)[0]
generations += batch_generations
if not disable_tqdm:
progress.update(len(batch_prompts)//num_return_sequences)
assert len(generations) == len(prompts) * num_return_sequences, "number of generations should be equal to number of prompts * num_return_sequences"
return generations
def load_hf_lm_and_tokenizer(
model_name_or_path,
tokenizer_name_or_path=None,
device_map="auto",
load_in_8bit=False,
load_in_half=True,
gptq_model=False,
use_fast_tokenizer=False,
padding_side="left",
use_safetensors=False,
):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
if not tokenizer_name_or_path:
tokenizer_name_or_path = model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=use_fast_tokenizer, padding_side=padding_side, trust_remote_code=True)
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, legacy=False, use_fast=use_fast_tokenizer, padding_side=padding_side, trust_remote_code=True)
# set pad token to eos token if pad token is not set
if tokenizer.pad_token is None:
if tokenizer.unk_token:
tokenizer.pad_token = tokenizer.unk_token
tokenizer.pad_token_id = tokenizer.unk_token_id
elif tokenizer.eos_token:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
raise ValueError("You are using a new tokenizer without a pad token."
"This is not supported by this script.")
# if tokenizer.pad_token is None:
# tokenizer.pad_token = tokenizer.unk_token
# tokenizer.pad_token_id = tokenizer.unk_token_id
if gptq_model:
from auto_gptq import AutoGPTQForCausalLM
model_wrapper = AutoGPTQForCausalLM.from_quantized(
model_name_or_path, device="cuda:0", use_triton=True
)
model = model_wrapper.model
elif load_in_8bit:
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
device_map=device_map,
load_in_8bit=True
)
else:
# return "", tokenizer
# defaul load in float16
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
torch_dtype=torch.float16,
device_map=device_map,
trust_remote_code=True,
use_safetensors=use_safetensors)
if torch.cuda.is_available():
model = model.cuda()
if load_in_half:
model = model.half()
model.eval()
return model, tokenizer
def _test_generate_completions():
model_name_or_path = "../models/codellama_7b/v1-16k"
llm, tokenizer = load_hf_lm_and_tokenizer(
model_name_or_path=model_name_or_path,
load_in_half=True,
use_fast_tokenizer=True,
use_safetensors=True,
)
# some math word problems
prompts = [
"---\n1+1=2\n---2+2=4\n---3+3=6\n---4+4=8\n---5+5=10\n---6+6=",
"---\n1+1=2\n---12+12=24\n---3+3=6\n---12345+12345=",
# "A train leaves Chicago at 7am and travels at 60mph. Another train leaves Chicago at 9am and travels at 80mph. When will the second train overtake the first?",
# "The sum of two numbers is 10. The difference of the same two numbers is 4. What are the two numbers?",
]
stop_sequences = ["\n\n\n", "---"]
# Because many tokenizers will treat the word after space differently from the original word alone,
# to be consistent, we add a space before tokenization and remove it after tokenization.
# stop_id_sequences = [tokenizer.encode(" " + x, add_special_tokens=False)[1:] for x in stop_sequences]
outputs = generate_completions(
model=llm,
tokenizer=tokenizer,
prompts=prompts,
max_new_tokens=128,
batch_size=16,
# stop_id_sequences=stop_id_sequences,
stop_id_sequences=stop_sequences,
)
print(outputs)
if __name__ == "__main__":
_test_generate_completions()