![Logo](https://picgo-1258602555.cos.ap-nanjing.myqcloud.com/icon.png) # [latex2sympy2](https://github.com/OrangeX4/latex2sympy) ## About `latex2sympy2` parses **LaTeX math expressions** and converts it into the equivalent **SymPy form**. The latex2sympy2 is adapted from [augustt198/latex2sympy](https://github.com/augustt198/latex2sympy) and [purdue-tlt / latex2sympy](https://github.com/purdue-tlt/latex2sympy). This project is a part of a VS Code extension called [Latex Sympy Calculator](https://marketplace.visualstudio.com/items?itemName=OrangeX4.latex-sympy-calculator). It is designed for providing people writing in latex or markdown a ability to calculate something when writing math expression. [ANTLR](http://www.antlr.org/) is used to generate the parser. ## Features * **Arithmetic:** Add (+), Sub (-), Dot Mul (·), Cross Mul (×), Frac (/), Power (^), Abs (|x|), Sqrt (√), etc... * **Alphabet:** a - z, A - Z, α - ω, Subscript (x_1), Accent Bar(ā), etc... * **Common Functions:** gcd, lcm, floor, ceil, max, min, log, ln, exp, sin, cos, tan, csc, sec, cot, arcsin, sinh, arsinh, etc... * **Funcion Symbol:** f(x), f(x-1,), g(x,y), etc... * **Calculous:** Limit ($lim_{n\to\infty}$), Derivation ($\frac{d}{dx}(x^2+x)$), Integration ($\int xdx$), etc... * **Linear Algebra:** Matrix, Determinant, Transpose, Inverse, Elementary Transformation, etc... * **Other:** Binomial... **NOTICE:** It will do some irreversible calculations when converting determinants, transposed matrixes and elementary transformations... ## Installation ``` pip install latex2sympy2 ``` **Requirements:** `sympy` and `antlr4-python3-runtime` packages. ## Usage ### Basic In Python: ```python from latex2sympy2 import latex2sympy, latex2latex tex = r"\frac{d}{dx}(x^{2}+x)" # Or you can use '\mathrm{d}' to replace 'd' latex2sympy(tex) # => "Derivative(x**2 + x, x)" latex2latex(tex) # => "2 x + 1" ``` ### Examples |LaTeX|Converted SymPy|Calculated Latex| |-----|-----|---------------| |`x^{3}` $x^{3}$| `x**3`|`x^{3}` $x^{3}$| |`\frac{d}{dx} tx` $\frac{d}{dx}tx$|`Derivative(x*t, x)`|`t` $t$| |`\sum_{i = 1}^{n} i` $\sum_{i = 1}^{n} i$|`Sum(i, (i, 1, n))`|`\frac{n \left(n + 1\right)}{2}` $\frac{n \left(n + 1\right)}{2}$| |`\int_{a}^{b} \frac{dt}{t}`|`Integral(1/t, (t, a, b))`|`-\log{(a)} + \log{(b)}` $-\log{(a)} + \log{(b)}$| |`(2x^3 - x + z)|_{x=3}` $(2x^3 - x + z)\|_{x=3}$|`z + 51`| `z + 51` $z + 51$ | If you want to read the math formula, you can click [GitNotes](https://notes.orangex4.cool/?git=github&github=OrangeX4/latex2sympy). ### Solve Equation ``` latex # Before x + y = 1 # After [ y = 1 - x, \ x = 1 - y] ``` ### Eval At ``` latex # Before (x+2)|_{x=y+1} # After y + 3 ``` ### Matrix #### Identity matrix ``` tex = r"\bm{I}_3" latex2sympy(tex) # => "Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])" ``` #### Determinant ``` python from latex2sympy2 import latex2sympy tex = r"\begin{vmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix}" latex2sympy(tex) # => "x^{3}" ``` #### Transpose ``` python from latex2sympy2 import latex2sympy tex = r"\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^T" # Or you can use "\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}'" latex2sympy(tex) # => "Matrix([[1, 4, 7], [2, 5, 8], [3, 6, 9]])" ``` #### Elementary Transformation ``` python from latex2sympy2 import latex2sympy matrix = r''' \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{pmatrix} ''' # Scale the row with grammar "\xrightarrow{kr_n}" tex = matrix + r'\xrightarrow{3r_1}' latex2sympy(tex) # => "Matrix([[3, 6, 9], [4, 5, 6], [7, 8, 9]])" # Swap the cols with grammar "\xrightarrow{c_1<=>c_2}" # Of course, you can use "\leftrightarrow" to replace "<=>" tex = matrix + r'\xrightarrow{c_1<=>c_2}' latex2sympy(tex) # => "Matrix([[2, 1, 3], [5, 4, 6], [8, 7, 9]])" # Scale the second row and add it to the first row # with grammar "\xrightarrow{r_1+kr_2}" tex = matrix + r'\xrightarrow{r_1+kr_2}' latex2sympy(tex) # => "Matrix([[4*k + 1, 5*k + 2, 6*k + 3], [4, 5, 6], [7, 8, 9]])" # You can compose the transform with comma "," # and grammar "\xrightarrow[4r_3]{2r_1, 3r_2}" # Remember the priority of "{}" is higher than "[]" tex = matrix + r'\xrightarrow[4r_3]{2r_1, 3r_2}' latex2sympy(tex) # => "Matrix([[2, 4, 6], [12, 15, 18], [28, 32, 36]])" ``` ### Variances ``` python from latex2sympy2 import latex2sympy, variances, var, set_variances # Assign x a value of 1 latex2sympy(r"x = 1") # Assign x a matrix symbol with dimension of n x m latex2sympy(r"x \in \mathbb{R}^{n \times m}") # Calculate x + y latex2sympy(r"x + y") # => "y + 1" # Get all variances print(variances) # => "{x: 1}" # Get variance of "x" print(var["x"]) # => "1" # Reset all variances set_variances({}) latex2sympy(r"x + y") # => "x + y" ``` ### Complex Number Support ``` python from latex2sympy2 import set_real set_real(False) ``` ## Contributing If you want to add a new grammar, you can fork the code from [OrangeX4/latex2sympy](https://github.com/OrangeX4/latex2sympy). * To modify parser grammar, view the existing structure in `PS.g4`. * To modify the action associated with each grammar, look into `latex2sympy.py`. Contributors are welcome! Feel free to open a pull request or an issue.