from sympy import * import sys sys.path.append("..") # # x^2\cdot \left(3\cdot \tan \left([!a!]\cdot x+[!c!]\right)+[!a!]\cdot x\left(\sec \left([!a!]\cdot x+[!c!]\right)\right)^2\right) # latex1 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(\\sec \\left(2\\cdot x+5\\right)\\right)^2\\right)" # math1 = process_sympy(latex1) # print("latex: %s to math: %s" %(latex1,math1)) # # latex2 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(\\sec \\left(2\\cdot x+5\\right)^2\\right)\\right)" # math2 = process_sympy(latex2) # print("latex: %s to math: %s" %(latex2,math2)) # # latex3 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(1+\\tan \\left(2\\cdot x+5\\right)^2\\right)\\right)" # math3 = process_sympy(latex3) # print("latex: %s to math: %s" %(latex3,math3)) # # print(simplify(math1 - math2)) # print(simplify(math1 - math3)) # # latex1 = "\\sec^2(2\\cdot x+5)" # math1 = process_sympy(latex1) # print("latex: %s to math: %s" %(latex1,math1)) # # latex2 = "1+\\tan^2(2\\cdot x+5)" # math2 = process_sympy(latex2) # print("latex: %s to math: %s" %(latex2,math2)) # print(simplify(math1 - math2)) x = Symbol('x', real=True) y = Symbol('y', real=True) # BUG: 1 + tan^2(x+1) should be == sec^2(x+1) but isnt lhs = (1 + (tan(x + 1))**2) rhs = (sec(x + 1))**2 eq = lhs - rhs print(simplify(lhs)) print(simplify(rhs)) print(simplify(eq)) print(simplify(lhs) == simplify(rhs)) # 1 + tan^2(x) == sec^2(x) but isnt lhs = (1 + (tan(x))**2) rhs = (sec(x))**2 eq = lhs - rhs print(simplify(lhs)) print(simplify(rhs)) print(simplify(eq)) print(simplify(lhs) == simplify(rhs))