# This is the hyperparameter configuration file for Hifigan. # Please make sure this is adjusted for the LJSpeech dataset. If you want to # apply to the other dataset, you might need to carefully change some parameters. # This configuration performs 4000k iters. ########################################################### # FEATURE EXTRACTION SETTING # ########################################################### sampling_rate: 22050 # Sampling rate of dataset. hop_size: 256 # Hop size. format: "npy" ########################################################### # GENERATOR NETWORK ARCHITECTURE SETTING # ########################################################### model_type: "hifigan_generator" hifigan_generator_params: out_channels: 1 kernel_size: 7 filters: 512 use_bias: true upsample_scales: [8, 8, 2, 2] stacks: 3 stack_kernel_size: [3, 7, 11] stack_dilation_rate: [[1, 3, 5], [1, 3, 5], [1, 3, 5]] use_final_nolinear_activation: true is_weight_norm: false ########################################################### # DISCRIMINATOR NETWORK ARCHITECTURE SETTING # ########################################################### hifigan_discriminator_params: out_channels: 1 # Number of output channels (number of subbands). period_scales: [2, 3, 5, 7, 11] # List of period scales. n_layers: 5 # Number of layer of each period discriminator. kernel_size: 5 # Kernel size. strides: 3 # Strides filters: 8 # In Conv filters of each period discriminator filter_scales: 4 # Filter scales. max_filters: 1024 # maximum filters of period discriminator's conv. is_weight_norm: false # Use weight-norm or not. melgan_discriminator_params: out_channels: 1 # Number of output channels. scales: 3 # Number of multi-scales. downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling. downsample_pooling_params: # Parameters of the above pooling function. pool_size: 4 strides: 2 kernel_sizes: [5, 3] # List of kernel size. filters: 16 # Number of channels of the initial conv layer. max_downsample_filters: 1024 # Maximum number of channels of downsampling layers. downsample_scales: [4, 4, 4, 4] # List of downsampling scales. nonlinear_activation: "LeakyReLU" # Nonlinear activation function. nonlinear_activation_params: # Parameters of nonlinear activation function. alpha: 0.2 is_weight_norm: false # Use weight-norm or not. ########################################################### # STFT LOSS SETTING # ########################################################### stft_loss_params: fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss. frame_steps: [120, 240, 50] # List of hop size for STFT-based loss frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss. ########################################################### # ADVERSARIAL LOSS SETTING # ########################################################### lambda_feat_match: 10.0 lambda_adv: 4.0 ########################################################### # DATA LOADER SETTING # ########################################################### batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1. batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size. batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size. remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. is_shuffle: true # shuffle dataset after each epoch. ########################################################### # OPTIMIZER & SCHEDULER SETTING # ########################################################### generator_optimizer_params: lr_fn: "PiecewiseConstantDecay" lr_params: boundaries: [100000, 200000, 300000, 400000, 500000, 600000, 700000] values: [0.000125, 0.000125, 0.0000625, 0.0000625, 0.0000625, 0.00003125, 0.000015625, 0.000001] amsgrad: false discriminator_optimizer_params: lr_fn: "PiecewiseConstantDecay" lr_params: boundaries: [100000, 200000, 300000, 400000, 500000] values: [0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001] amsgrad: false gradient_accumulation_steps: 1 # should be even number or 1. ########################################################### # INTERVAL SETTING # ########################################################### discriminator_train_start_steps: 100000 # steps begin training discriminator train_max_steps: 4000000 # Number of training steps. save_interval_steps: 20000 # Interval steps to save checkpoint. eval_interval_steps: 5000 # Interval steps to evaluate the network. log_interval_steps: 200 # Interval steps to record the training log. ########################################################### # OTHER SETTING # ########################################################### num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.