takarajordan commited on
Commit
8f8dc16
1 Parent(s): 1a61279

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -3
README.md CHANGED
@@ -1,3 +1,77 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - ja
5
+ pipeline_tag: image-to-text
6
+ ---
7
+ # Steganography Neural Network Model Card
8
+
9
+ ## Model Overview
10
+ **Task:** Image Steganography (Message Embedding and Extraction)
11
+ **Architecture Type:** Encoder-Decoder Neural Network
12
+ **Primary Use Case:** Embedding and recovering hidden messages in images
13
+ **Developer:** Not specified
14
+ **License:** Not specified
15
+
16
+ ## Technical Specifications
17
+ - **Parameters:** 980,548
18
+ - **Model Size:** 3.74 MB
19
+ - **Precision:** torch.float32
20
+ - **FLOPs:** 1,954,176
21
+ - **Input Resolution:** 512 × 512 pixels
22
+ - **Framework:** PyTorch
23
+
24
+ ## Architecture Details
25
+
26
+ ### Encoder Network
27
+ - **Input:** 4 channels (RGB + message), 512×512px
28
+ - **Output:** 3 channels (RGB stego image), 512×512px
29
+ - **Key Components:**
30
+ - Initial Conv (4→64 channels)
31
+ - Backbone with SE blocks and dilated convolutions
32
+ - Residual connections
33
+ - Final weighted combination (0.9 × original + 0.1 × encoded)
34
+
35
+ ### Decoder Network
36
+ - **Input:** 3 channels (stego image), 512×512px
37
+ - **Output:** 1 channel (recovered message), 512×512px
38
+ - **Key Components:**
39
+ - Feature extraction (3→64→128 channels)
40
+ - SE blocks and residual connections
41
+ - Message extraction pathway
42
+
43
+ ## Training Details
44
+ - **Hardware:** GTX 1080 GPU
45
+ - **Epochs:** 600
46
+ - **Optimizer:** AdamW (lr=0.001, weight_decay=0.01)
47
+ - **Scheduler:** Cosine Annealing (min_lr=1e-6)
48
+ - **Loss Functions:**
49
+ - Image Loss: 0.95×MSE + 0.05×(1-SSIM)
50
+ - Message Loss: MSE
51
+ - Combined with dynamic alpha weighting
52
+
53
+ ## Key Features
54
+ - Group Normalization for batch-size independence
55
+ - SiLU activation functions throughout
56
+ - Squeeze-and-Excitation blocks for channel attention
57
+ - Dilated convolutions in encoder
58
+ - Skip connections for detail preservation
59
+
60
+ ## Performance Characteristics
61
+ - Maintains visual image quality while embedding messages
62
+ - Optimized for both image fidelity and message recovery
63
+ - Lightweight architecture (<1M parameters)
64
+
65
+ ## Limitations and Biases
66
+ - Fixed input resolution of 512×512 pixels
67
+
68
+
69
+ ## Technical Requirements
70
+ - PyTorch environment
71
+ - GPU recommended for optimal performance
72
+ - Standard deep learning dependencies
73
+ - Sufficient memory for 3.74 MB model
74
+
75
+ ## Citation and Contact
76
+ - Model source and citation information not provided
77
+ - Contact information for maintainers not specified