takarajordan
commited on
Commit
•
8f8dc16
1
Parent(s):
1a61279
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,77 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- ja
|
5 |
+
pipeline_tag: image-to-text
|
6 |
+
---
|
7 |
+
# Steganography Neural Network Model Card
|
8 |
+
|
9 |
+
## Model Overview
|
10 |
+
**Task:** Image Steganography (Message Embedding and Extraction)
|
11 |
+
**Architecture Type:** Encoder-Decoder Neural Network
|
12 |
+
**Primary Use Case:** Embedding and recovering hidden messages in images
|
13 |
+
**Developer:** Not specified
|
14 |
+
**License:** Not specified
|
15 |
+
|
16 |
+
## Technical Specifications
|
17 |
+
- **Parameters:** 980,548
|
18 |
+
- **Model Size:** 3.74 MB
|
19 |
+
- **Precision:** torch.float32
|
20 |
+
- **FLOPs:** 1,954,176
|
21 |
+
- **Input Resolution:** 512 × 512 pixels
|
22 |
+
- **Framework:** PyTorch
|
23 |
+
|
24 |
+
## Architecture Details
|
25 |
+
|
26 |
+
### Encoder Network
|
27 |
+
- **Input:** 4 channels (RGB + message), 512×512px
|
28 |
+
- **Output:** 3 channels (RGB stego image), 512×512px
|
29 |
+
- **Key Components:**
|
30 |
+
- Initial Conv (4→64 channels)
|
31 |
+
- Backbone with SE blocks and dilated convolutions
|
32 |
+
- Residual connections
|
33 |
+
- Final weighted combination (0.9 × original + 0.1 × encoded)
|
34 |
+
|
35 |
+
### Decoder Network
|
36 |
+
- **Input:** 3 channels (stego image), 512×512px
|
37 |
+
- **Output:** 1 channel (recovered message), 512×512px
|
38 |
+
- **Key Components:**
|
39 |
+
- Feature extraction (3→64→128 channels)
|
40 |
+
- SE blocks and residual connections
|
41 |
+
- Message extraction pathway
|
42 |
+
|
43 |
+
## Training Details
|
44 |
+
- **Hardware:** GTX 1080 GPU
|
45 |
+
- **Epochs:** 600
|
46 |
+
- **Optimizer:** AdamW (lr=0.001, weight_decay=0.01)
|
47 |
+
- **Scheduler:** Cosine Annealing (min_lr=1e-6)
|
48 |
+
- **Loss Functions:**
|
49 |
+
- Image Loss: 0.95×MSE + 0.05×(1-SSIM)
|
50 |
+
- Message Loss: MSE
|
51 |
+
- Combined with dynamic alpha weighting
|
52 |
+
|
53 |
+
## Key Features
|
54 |
+
- Group Normalization for batch-size independence
|
55 |
+
- SiLU activation functions throughout
|
56 |
+
- Squeeze-and-Excitation blocks for channel attention
|
57 |
+
- Dilated convolutions in encoder
|
58 |
+
- Skip connections for detail preservation
|
59 |
+
|
60 |
+
## Performance Characteristics
|
61 |
+
- Maintains visual image quality while embedding messages
|
62 |
+
- Optimized for both image fidelity and message recovery
|
63 |
+
- Lightweight architecture (<1M parameters)
|
64 |
+
|
65 |
+
## Limitations and Biases
|
66 |
+
- Fixed input resolution of 512×512 pixels
|
67 |
+
|
68 |
+
|
69 |
+
## Technical Requirements
|
70 |
+
- PyTorch environment
|
71 |
+
- GPU recommended for optimal performance
|
72 |
+
- Standard deep learning dependencies
|
73 |
+
- Sufficient memory for 3.74 MB model
|
74 |
+
|
75 |
+
## Citation and Contact
|
76 |
+
- Model source and citation information not provided
|
77 |
+
- Contact information for maintainers not specified
|