tangg555 commited on
Commit
4108075
1 Parent(s): f4aa7e5

Model save

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -17,8 +17,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 2.0961
21
- - Accuracy: 0.4377
22
 
23
  ## Model description
24
 
@@ -38,11 +38,11 @@ More information needed
38
 
39
  The following hyperparameters were used during training:
40
  - learning_rate: 5e-05
41
- - train_batch_size: 128
42
- - eval_batch_size: 128
43
  - seed: 42
44
- - gradient_accumulation_steps: 4
45
- - total_train_batch_size: 512
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_ratio: 0.1
@@ -52,9 +52,9 @@ The following hyperparameters were used during training:
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
  |:-------------:|:------:|:----:|:---------------:|:--------:|
55
- | 2.2376 | 0.9953 | 105 | 2.2017 | 0.2982 |
56
- | 2.1641 | 2.0 | 211 | 2.1208 | 0.4042 |
57
- | 2.1453 | 2.9858 | 315 | 2.0961 | 0.4377 |
58
 
59
 
60
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 2.1829
21
+ - Accuracy: 0.2367
22
 
23
  ## Model description
24
 
 
38
 
39
  The following hyperparameters were used during training:
40
  - learning_rate: 5e-05
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 32
43
  - seed: 42
44
+ - gradient_accumulation_steps: 30
45
+ - total_train_batch_size: 960
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_ratio: 0.1
 
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
  |:-------------:|:------:|:----:|:---------------:|:--------:|
55
+ | 2.2886 | 0.9953 | 56 | 2.2661 | 0.157 |
56
+ | 2.2153 | 1.9905 | 112 | 2.2004 | 0.1945 |
57
+ | 2.1981 | 2.9858 | 168 | 2.1829 | 0.2367 |
58
 
59
 
60
  ### Framework versions