--- library_name: transformers base_model: openai/clip-vit-large-patch14 tags: - generated_from_trainer metrics: - accuracy model-index: - name: clip-vit-large-patch14-finetuned-clip-vit-large-patch14-mnist_linear_probe results: [] --- # clip-vit-large-patch14-finetuned-clip-vit-large-patch14-mnist_linear_probe This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1829 - Accuracy: 0.2367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 30 - total_train_batch_size: 960 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.2886 | 0.9953 | 56 | 2.2661 | 0.157 | | 2.2153 | 1.9905 | 112 | 2.2004 | 0.1945 | | 2.1981 | 2.9858 | 168 | 2.1829 | 0.2367 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1