File size: 7,535 Bytes
81565a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from typing import Optional, Union
from functools import partial
import numpy as np
from datasets import load_dataset
from litdata import optimize, TokensLoader
from litgpt.tokenizer import Tokenizer
def batch_dict_iterator(path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
keep_in_memory: bool=False,
revision: Optional[str]=None,
split: str='train',
num_proc: Optional[int]=None,
format: Optional[str]=None):
assert isinstance(format, str) or callable(format)
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
keep_in_memory=keep_in_memory,
revision=revision,
split=split,
trust_remote_code=True,
num_proc=num_proc)
if callable(format):
for row in dataset:
text = format(row)
yield text
else:
for row in dataset:
text = format.format(**row)
yield text
def batch_iterator(dataset_config: Union[list, dict]):
if isinstance(dataset_config, dict):
for text in batch_dict_iterator(**dataset_config):
yield text
elif isinstance(dataset_config, list):
for dc in dataset_config:
for text in batch_dict_iterator(**dc):
yield text
else:
raise ValueError('')
def tokenize_fn(dataset_config: Union[dict, list], tokenizer: Optional[Tokenizer]=None):
assert isinstance(dataset_config, (dict, list))
for text in batch_iterator(dataset_config):
text_ids = tokenizer.encode(text, bos=False, eos=True)
yield text_ids
datasets_configs = [
#
# multilingual text
#
[
# 193 MB, 1,141,967
{'path': 'xu-song/cc100-samples', 'name': name, 'split': 'train', 'format': lambda n: n['text']}
for name in [
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
'zh-Hans', 'zh-Hant', 'zu',
]
],
#
# general knowledge
#
# 2.89 GB, 430,000, English September of 2017
*[
{'path': 'jordiclive/wikipedia-summary-dataset', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['summary']}
for i in range(0, 100, 20)
],
# 3.18 GB, 1,010,500
*[
{'path': 'JeanKaddour/minipile', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['text']}
for i in range(0, 100, 20)
],
#
# misc
#
{'path': 'badrex/llm-emoji-dataset', 'format': '{character} {unicode} {short description} {tags} {LLM description}'}, # 472 KB, 5,034
#
# math
#
# 12.2 MB, 500,000
[
{'path': 'fblgit/simple-math', 'revision': 'refs/convert/parquet', 'split': f'train[{i}%:{i + 20}%]+test', 'format': '{instruction} = {output}'}
for i in range(0, 100, 20)
],
# 125 MB, 1,000,000
[
{'path': 'Gusarich/math-expressions-1m', 'revision': 'refs/convert/parquet', 'split': f'train[{i}%:{i + 20}%]', 'format': '{expression} = {result}'}
for i in range(0, 100, 20)
],
# 3.49 GB, 22,259,474
[
{'path': 'AtlasUnified/atlas-math-sets', 'split': f'train[{i}%:{i + 20}%]+validation+test', 'format': '{instruction} . {output}'}
for i in range(0, 100, 20)
],
# 9.05 GB, 2,583,257
[
{'path': 'gair-prox/open-web-math-pro', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['text']}
for i in range(0, 100, 20)
],
#
# code
#
[
# 102 MB, 8,700
{'path': 'bigcode/the-stack-smol-xs', 'name': name, 'format': lambda n: n['content']}
for name in [
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly',
'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp',
'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go',
'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean',
'literate-agda', 'literate-coffeescript', 'literate-haskell',
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab',
'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext',
'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan',
'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt',
'yacc', 'zig',
]
],
# 2.3 GB, 2,218,460
[
{'path': 'rombodawg/code_bagel', 'split': f'train[{i}%:{i + 20}%]', 'format': '{input}\n{output}'}
for i in range(0, 100, 20)
],
#
# general reasoning
#
{'path': 'AtlasUnified/Atlas-Reasoning', 'data_files': 'reasoning.csv', 'format': '{Prompt} {Step-by-step reasoning} {Solution}'}, # 10.8 MB, 15,770
#
# math reasoning
#
[
{'path': 'thesven/gsm8k-reasoning', 'format': '{question} {generation} {answer} {short_answer}'}, # 8.99 MB, 6,914
{'path': 'AlgorithmicResearchGroup/math_reasoning_autoformalization_track', 'format': '{informal_statement} {informal_proof} {formal_proof}'}, # 1.79 MB, 3,963
{'path': 'KingNish/reasoning-base-20k', 'format': '{user} {reasoning} {assistant}'}, # 307 MB, 19,944
],
#
# code reasoning
#
[
{'path': 'SkunkworksAI/reasoning-0.01', 'format': '{instruction} {reasoning} {output}'}, # 56.4 MB, 29,857
{'path': 'Magpie-Align/Magpie-Reasoning-150K', 'format': '{instruction} {response}'}, # 368 MB, 150,000
],
]
outputs = optimize(
fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
inputs=datasets_configs,
output_dir='../pretrain-data/',
# Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
chunk_size=(2049 * 8012),
num_workers=32,
reorder_files=False,
)
#
# total number of chunks
#
from litdata import StreamingDataset, StreamingDataLoader, TokensLoader
dataset = StreamingDataset(
input_dir='../pretrain-data/',
item_loader=TokensLoader(block_size=2049),
)
print(len(dataset))
|