xlsr-bengali
Browse files- README.md +99 -0
- config.json +76 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: Bengali
|
3 |
+
datasets:
|
4 |
+
- OpenSLR
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
- xlsr-fine-tuning-week
|
12 |
+
license: Attribution-ShareAlike 4.0 International
|
13 |
+
model-index:
|
14 |
+
- name: XLSR Wav2Vec2 Bengali by Tanmoy Sarkar
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: OpenSLR
|
21 |
+
type: OpenSLR
|
22 |
+
args: or
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 88.58
|
27 |
+
---
|
28 |
+
# Wav2Vec2-Large-XLSR-Bengali
|
29 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using the [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/).
|
30 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
+
## Usage
|
32 |
+
Dataset must be downloaded from [this website](https://www.openslr.org/53/) and preprocessed accordingly. For example 1250 test samples has been chosen.
|
33 |
+
```python
|
34 |
+
import pandas as pd
|
35 |
+
test_dataset = pd.read_csv('utt_spk_text.tsv', sep='\t', header=None)[60000:61250]
|
36 |
+
test_dataset.columns = ["audio_path", "__", "label"]
|
37 |
+
test_dataset = test_data.drop("__", axis=1)
|
38 |
+
def add_file_path(text):
|
39 |
+
path = "data/" + text[:2] + "/" + text + '.flac'
|
40 |
+
return path
|
41 |
+
test_dataset['audio_path'] = test_dataset['audio_path'].map(lambda x: add_file_path(x))
|
42 |
+
```
|
43 |
+
The model can be used directly (without a language model) as follows:
|
44 |
+
```python
|
45 |
+
import torch
|
46 |
+
import torchaudio
|
47 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
48 |
+
processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
|
49 |
+
model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
|
50 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
51 |
+
# Preprocessing the datasets.
|
52 |
+
# We need to read the aduio files as arrays
|
53 |
+
def speech_file_to_array_fn(batch):
|
54 |
+
speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
|
55 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
56 |
+
return batch
|
57 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
58 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
59 |
+
with torch.no_grad():
|
60 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
61 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
62 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
63 |
+
print("Reference:", test_dataset["label"][:2])
|
64 |
+
```
|
65 |
+
## Evaluation
|
66 |
+
The model can be evaluated as follows on the Bengali test data of OpenSLR.
|
67 |
+
```python
|
68 |
+
import torch
|
69 |
+
import torchaudio
|
70 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
71 |
+
import re
|
72 |
+
wer = load_metric("wer")
|
73 |
+
processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
|
74 |
+
model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
|
75 |
+
model.to("cuda")
|
76 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
77 |
+
# Preprocessing the datasets.
|
78 |
+
# We need to read the aduio files as arrays
|
79 |
+
def speech_file_to_array_fn(batch):
|
80 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["label"]).lower()
|
81 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
82 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
83 |
+
return batch
|
84 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
85 |
+
# Preprocessing the datasets.
|
86 |
+
# We need to read the aduio files as arrays
|
87 |
+
def evaluate(batch):
|
88 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
89 |
+
with torch.no_grad():
|
90 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
91 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
92 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
93 |
+
return batch
|
94 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
95 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
96 |
+
```
|
97 |
+
**Test Result**: 88.58 %
|
98 |
+
## Training
|
99 |
+
The script used for training can be found [Bengali ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1Bkc5C_cJV9BeS0FD0MuHyayl8hqcbdRZ?usp=sharing)
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.0,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 118,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 119
|
76 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:788e64f971b140bbc265df0486041a0607fe55baf5a22c15b31140b5e5cc1813
|
3 |
+
size 1262421719
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"র": 0, "0": 1, "t": 2, "০": 3, "": 4, "ন": 5, "প": 6, "৬": 7, "ঃ": 8, "\t": 9, "ড": 10, "হ": 11, "ব": 12, "8": 13, "১": 14, "1": 15, "৮": 16, "স": 17, "ো": 18, "ঙ": 19, "৭": 20, "o": 21, "ূ": 22, "ৈ": 23, "": 24, "d": 25, "ফ": 26, "য়": 27, "c": 28, "ঊ": 29, "৪": 30, "b": 31, "জ": 32, "p": 33, "9": 34, "3": 35, "ড়": 36, "2": 37, "w": 39, "ল": 40, "ু": 41, "ঝ": 42, "\"": 43, "ই": 44, "ঘ": 45, "n": 46, "ক": 47, "ট": 48, "r": 49, "ণ": 50, "ছ": 51, "থ": 52, "ভ": 53, "শ": 54, ":": 55, "দ": 56, "6": 57, "a": 58, "ম": 59, "-": 60, "এ": 61, "!": 62, "ত": 63, "খ": 64, "চ": 65, ",": 66, ".": 67, "২": 68, "l": 69, "আ": 70, "গ": 71, "্": 72, "4": 73, "ঞ": 74, "৩": 75, "7": 76, "য": 77, "s": 78, "/": 79, "": 80, "়": 81, "ও": 82, "e": 83, "ৌ": 84, "ঈ": 85, "'": 86, "ে": 87, "া": 88, "ঢ": 89, "\n": 90, "ঐ": 91, "ঔ": 92, "‘": 93, "উ": 94, "’": 95, "ধ": 96, "g": 97, "ঠ": 98, "ং": 99, "।": 100, "u": 101, "5": 102, "ৎ": 103, "v": 104, "ঋ": 105, "ী": 106, "৯": 107, "ঁ": 108, "অ": 109, "f": 110, "ষ": 111, "": 112, "৫": 113, "ৃ": 114, "?": 115, "ি": 116, "|": 38, "[UNK]": 117, "[PAD]": 118}
|