File size: 3,496 Bytes
a33aac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8c834b
 
 
 
 
 
 
a33aac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8c834b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33aac1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: bsd-3-clause
base_model: LongSafari/hyenadna-large-1m-seqlen-hf
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: hyenadna-large-1m-seqlen-hf_ft_BioS73_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hyenadna-large-1m-seqlen-hf_ft_BioS73_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [LongSafari/hyenadna-large-1m-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4445
- F1 Score: 0.8449
- Precision: 0.7906
- Recall: 0.9071
- Accuracy: 0.8222
- Auc: 0.8958
- Prc: 0.8902

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.504         | 0.1864 | 500  | 0.4797          | 0.8144   | 0.7226    | 0.9330 | 0.7730   | 0.8602 | 0.8528 |
| 0.4627        | 0.3727 | 1000 | 0.4431          | 0.8260   | 0.7718    | 0.8883 | 0.8002   | 0.8747 | 0.8687 |
| 0.4575        | 0.5591 | 1500 | 0.4477          | 0.8141   | 0.8161    | 0.8122 | 0.8021   | 0.8774 | 0.8745 |
| 0.4486        | 0.7454 | 2000 | 0.4197          | 0.8338   | 0.7739    | 0.9036 | 0.8077   | 0.8862 | 0.8791 |
| 0.4296        | 0.9318 | 2500 | 0.4227          | 0.8372   | 0.7763    | 0.9085 | 0.8114   | 0.8912 | 0.8804 |
| 0.4277        | 1.1182 | 3000 | 0.4181          | 0.8396   | 0.7713    | 0.9211 | 0.8122   | 0.8909 | 0.8864 |
| 0.4166        | 1.3045 | 3500 | 0.4481          | 0.8315   | 0.8159    | 0.8478 | 0.8166   | 0.8859 | 0.8803 |
| 0.4235        | 1.4909 | 4000 | 0.4253          | 0.8341   | 0.7819    | 0.8939 | 0.8103   | 0.8897 | 0.8854 |
| 0.4149        | 1.6772 | 4500 | 0.4432          | 0.8370   | 0.7690    | 0.9183 | 0.8092   | 0.8898 | 0.8820 |
| 0.4099        | 1.8636 | 5000 | 0.4597          | 0.8123   | 0.7279    | 0.9190 | 0.7734   | 0.8676 | 0.8681 |
| 0.4078        | 2.0499 | 5500 | 0.4425          | 0.8450   | 0.7918    | 0.9057 | 0.8226   | 0.8942 | 0.8910 |
| 0.4201        | 2.2363 | 6000 | 0.4509          | 0.8445   | 0.7781    | 0.9232 | 0.8185   | 0.8963 | 0.8886 |
| 0.3896        | 2.4227 | 6500 | 0.4153          | 0.8387   | 0.7627    | 0.9316 | 0.8088   | 0.8926 | 0.8856 |
| 0.4104        | 2.6090 | 7000 | 0.4066          | 0.8378   | 0.8024    | 0.8764 | 0.8189   | 0.8896 | 0.8833 |
| 0.395         | 2.7954 | 7500 | 0.4659          | 0.8371   | 0.8190    | 0.8561 | 0.8222   | 0.8969 | 0.8908 |
| 0.3646        | 2.9817 | 8000 | 0.4445          | 0.8449   | 0.7906    | 0.9071 | 0.8222   | 0.8958 | 0.8902 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0