--- license: cc-by-nc-sa-4.0 base_model: InstaDeepAI/nucleotide-transformer-v2-250m-multi-species tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: nucleotide-transformer-v2-250m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC results: [] --- # nucleotide-transformer-v2-250m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-250m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-250m-multi-species) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4669 - F1 Score: 0.8482 - Precision: 0.9254 - Recall: 0.7829 - Accuracy: 0.8514 - Auc: 0.9436 - Prc: 0.9461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.5459 | 0.0840 | 500 | 0.4629 | 0.8082 | 0.7697 | 0.8507 | 0.7858 | 0.8605 | 0.8526 | | 0.476 | 0.1681 | 1000 | 0.4365 | 0.8113 | 0.8419 | 0.7829 | 0.8068 | 0.8914 | 0.8847 | | 0.4251 | 0.2521 | 1500 | 0.4039 | 0.8445 | 0.7750 | 0.9277 | 0.8188 | 0.9021 | 0.8959 | | 0.4355 | 0.3362 | 2000 | 0.4217 | 0.8192 | 0.8716 | 0.7727 | 0.8191 | 0.9104 | 0.9059 | | 0.4098 | 0.4202 | 2500 | 0.3846 | 0.8278 | 0.8977 | 0.7680 | 0.8305 | 0.9216 | 0.9202 | | 0.3904 | 0.5043 | 3000 | 0.3587 | 0.8477 | 0.8689 | 0.8276 | 0.8423 | 0.9239 | 0.9266 | | 0.3785 | 0.5883 | 3500 | 0.3705 | 0.8592 | 0.7885 | 0.9439 | 0.8359 | 0.9306 | 0.9291 | | 0.37 | 0.6724 | 4000 | 0.3494 | 0.8648 | 0.8831 | 0.8472 | 0.8594 | 0.9353 | 0.9370 | | 0.3692 | 0.7564 | 4500 | 0.3426 | 0.8667 | 0.8688 | 0.8647 | 0.8589 | 0.9363 | 0.9377 | | 0.3528 | 0.8405 | 5000 | 0.3328 | 0.8756 | 0.8447 | 0.9087 | 0.8630 | 0.9397 | 0.9405 | | 0.3494 | 0.9245 | 5500 | 0.3519 | 0.8750 | 0.8640 | 0.8862 | 0.8657 | 0.9403 | 0.9428 | | 0.3383 | 1.0086 | 6000 | 0.3942 | 0.8734 | 0.8074 | 0.9512 | 0.8537 | 0.9451 | 0.9472 | | 0.2873 | 1.0926 | 6500 | 0.3763 | 0.8873 | 0.8707 | 0.9046 | 0.8781 | 0.9463 | 0.9481 | | 0.2825 | 1.1767 | 7000 | 0.3689 | 0.8831 | 0.8293 | 0.9442 | 0.8674 | 0.9455 | 0.9461 | | 0.2906 | 1.2607 | 7500 | 0.3785 | 0.8851 | 0.8664 | 0.9046 | 0.8754 | 0.9453 | 0.9469 | | 0.2796 | 1.3448 | 8000 | 0.4669 | 0.8482 | 0.9254 | 0.7829 | 0.8514 | 0.9436 | 0.9461 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0