File size: 3,135 Bytes
1156d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-250m-multi-species
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-v2-250m-multi-species_ft_BioS74_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nucleotide-transformer-v2-250m-multi-species_ft_BioS74_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-250m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-250m-multi-species) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4377
- F1 Score: 0.8443
- Precision: 0.8375
- Recall: 0.8513
- Accuracy: 0.8357
- Auc: 0.9204
- Prc: 0.9200

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.5435        | 0.1314 | 500  | 0.4807          | 0.7852   | 0.7671    | 0.8041 | 0.7697   | 0.8475 | 0.8374 |
| 0.4802        | 0.2629 | 1000 | 0.4676          | 0.7970   | 0.8330    | 0.7639 | 0.7962   | 0.8865 | 0.8785 |
| 0.447         | 0.3943 | 1500 | 0.4175          | 0.8250   | 0.7963    | 0.8559 | 0.8099   | 0.8886 | 0.8861 |
| 0.4234        | 0.5258 | 2000 | 0.4370          | 0.8314   | 0.7957    | 0.8704 | 0.8151   | 0.8937 | 0.8886 |
| 0.3993        | 0.6572 | 2500 | 0.4282          | 0.8396   | 0.7796    | 0.9096 | 0.8180   | 0.9022 | 0.9012 |
| 0.4313        | 0.7886 | 3000 | 0.3782          | 0.8460   | 0.8120    | 0.8830 | 0.8317   | 0.9087 | 0.9067 |
| 0.4072        | 0.9201 | 3500 | 0.4128          | 0.8470   | 0.8187    | 0.8774 | 0.8341   | 0.9120 | 0.9084 |
| 0.3926        | 1.0515 | 4000 | 0.4713          | 0.8271   | 0.8572    | 0.7991 | 0.8251   | 0.9079 | 0.9001 |
| 0.3545        | 1.1830 | 4500 | 0.3876          | 0.8472   | 0.8181    | 0.8785 | 0.8341   | 0.9127 | 0.9099 |
| 0.3484        | 1.3144 | 5000 | 0.3995          | 0.8388   | 0.8323    | 0.8453 | 0.8299   | 0.9133 | 0.9091 |
| 0.3486        | 1.4458 | 5500 | 0.4504          | 0.8275   | 0.8627    | 0.7951 | 0.8265   | 0.9164 | 0.9164 |
| 0.3305        | 1.5773 | 6000 | 0.4377          | 0.8443   | 0.8375    | 0.8513 | 0.8357   | 0.9204 | 0.9200 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0