--- license: cc-by-nc-sa-4.0 base_model: InstaDeepAI/nucleotide-transformer-v2-500m-multi-species tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: nucleotide-transformer-v2-500m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC results: [] --- # nucleotide-transformer-v2-500m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-500m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-500m-multi-species) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2234 - F1 Score: 0.8240 - Precision: 0.8645 - Recall: 0.7871 - Accuracy: 0.8246 - Auc: 0.9119 - Prc: 0.9103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.4976 | 0.4205 | 500 | 0.4129 | 0.8285 | 0.7809 | 0.8823 | 0.8094 | 0.8977 | 0.8961 | | 0.384 | 0.8410 | 1000 | 0.3673 | 0.8526 | 0.8023 | 0.9097 | 0.8359 | 0.9206 | 0.9183 | | 0.3235 | 1.2616 | 1500 | 0.3902 | 0.8505 | 0.8643 | 0.8371 | 0.8464 | 0.9269 | 0.9284 | | 0.2866 | 1.6821 | 2000 | 0.3665 | 0.8623 | 0.8514 | 0.8734 | 0.8544 | 0.9286 | 0.9270 | | 0.2547 | 2.1026 | 2500 | 0.7526 | 0.8592 | 0.8003 | 0.9274 | 0.8414 | 0.9245 | 0.9232 | | 0.316 | 2.5231 | 3000 | 1.5948 | 0.8466 | 0.8614 | 0.8323 | 0.8427 | 0.9224 | 0.9239 | | 0.4261 | 2.9437 | 3500 | 1.2234 | 0.8240 | 0.8645 | 0.7871 | 0.8246 | 0.9119 | 0.9103 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0