Update README.md
Browse files
README.md
CHANGED
@@ -43,6 +43,28 @@ It achieves the following results on the test split:
|
|
43 |
- Loss: 2.7633
|
44 |
- Accuracy: 0.7479
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
## Model description
|
47 |
|
48 |
A single linear layer classifier is fit on top of the last layer [CLS] token representation of the EstBERT model. The model is fully fine-tuned during training.
|
|
|
43 |
- Loss: 2.7633
|
44 |
- Accuracy: 0.7479
|
45 |
|
46 |
+
## How to use?
|
47 |
+
|
48 |
+
You can use this model with the Transformers pipeline for text classification.
|
49 |
+
|
50 |
+
```
|
51 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
52 |
+
from transformers import pipeline
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("tartuNLP/EstBERT128_sentiment")
|
55 |
+
model = AutoModelForSequenceClassification.from_pretrained("tartuNLP/EstBERT128_sentiment")
|
56 |
+
|
57 |
+
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
58 |
+
text = "Viimastel nädalatel on üha valjemaks muutunud hääled, mis läbisegi süüdistavad regionaalminister Madis Kallast röövretke korraldamises rikastesse valdadesse ja teisalt tegevusetuses."
|
59 |
+
result = nlp(text)
|
60 |
+
|
61 |
+
print(result)
|
62 |
+
```
|
63 |
+
|
64 |
+
```
|
65 |
+
[{'label': 'negatiivne', 'score': 0.9999992847442627}]
|
66 |
+
```
|
67 |
+
|
68 |
## Model description
|
69 |
|
70 |
A single linear layer classifier is fit on top of the last layer [CLS] token representation of the EstBERT model. The model is fully fine-tuned during training.
|