taidopurason commited on
Commit
4e225cd
·
verified ·
1 Parent(s): 769d062

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -174
README.md CHANGED
@@ -1,199 +1,112 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - GEC
5
+ language:
6
+ - de
7
+ base_model:
8
+ - LeoLM/leo-hessianai-7b
9
+ pipeline_tag: text-generation
10
  ---
11
 
12
+ # leo-hessianai-7b-p1-llama-errors-p2-GEC
13
 
14
+ GEC model for German based on [LeoLM/leo-hessianai-7b](https://huggingface.co/LeoLM/leo-hessianai-7b) and fine-tuned on 1) correcting 1M synthetic errors produced by our Llama-based error generation model 2) human GEC data.
15
 
16
 
17
+ For training and inference code used in our paper see our repository [https://github.com/TartuNLP/gec-llm](https://github.com/TartuNLP/gec-llm).
18
 
 
19
 
20
+ ### Usage for Inference
21
+ Simple example (we provide the templating in `tokenizer.chat_template`)
22
+ ````
23
+ from transformers import pipeline
24
+ import torch
25
 
26
+ gec_pipe = pipeline(
27
+ "text-generation",
28
+ model="tartuNLP/leo-hessianai-7b-p1-llama-errors-p2-GEC",
29
+ torch_dtype=torch.bfloat16,
30
+ device_map="auto",
31
+ do_sample=False, num_beams=4, temperature=None, top_p=None
32
+ )
33
+ gec_pipe.tokenizer.pad_token_id = gec_pipe.tokenizer.eos_token_id
34
+ gec_pipe.tokenizer.padding_side = "left"
35
 
36
+ ### Input sentence here:
37
+ input_sentence = "Hello welt"
38
+ gec_pipe([{"role": "user", "content": input_sentence}], max_new_tokens=300)[0]["generated_text"][-1]["content"]
39
+ ````
40
 
41
+ Alternative:
42
+ ````
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
44
+ import torch
 
 
 
45
 
46
+ model = AutoModelForCausalLM.from_pretrained(
47
+ "tartuNLP/leo-hessianai-7b-p1-llama-errors-p2-GEC",
48
+ device_map="auto",
49
+ return_dict=True,
50
+ low_cpu_mem_usage=True,
51
+ torch_dtype=torch.bfloat16
52
+ )
53
 
54
+ tokenizer = AutoTokenizer.from_pretrained(
55
+ "tartuNLP/leo-hessianai-7b-p1-llama-errors-p2-GEC",
56
+ padding_side="left"
57
+ )
58
+ # Need to set the padding token to 0 or eos_token_id if batching is used
59
+ # (the model does not set it by default)
60
+ tokenizer.pad_token_id = tokenizer.eos_token_id
61
 
62
+ gec_pipe = pipeline(
63
+ "text-generation", model=model, tokenizer=tokenizer, do_sample=False, num_beams=4, temperature=None, top_p=None
64
+ )
65
 
 
66
 
67
+ ### Input sentence here
68
+ input_sentence = "Hello welt"
69
 
70
+ # Two options:
71
+ # 1)
72
+ PROMPT = '### Instruction:\nReply with a corrected version of the input sentence in German with all grammatical and spelling errors fixed. If there are no errors, reply with a copy of the original sentence.\n\n### Input:\n{input}\n\n### Response:\n'
73
+ example = PROMPT.format(input=input_sentence)
74
+ # 2) or use the chat template provided by us that does the same thing
75
+ example = tokenizer.apply_chat_template([{"role": "user", "content": input_sentence}], tokenize=False)
76
 
77
+ gec_pipe(example, max_new_tokens=300)[0]["generated_text"][len(example):]
78
+ ````
79
 
80
+ #### Preprocessing
81
 
82
+ For German, we used a detokenization script ([detokenize.py](https://github.com/TartuNLP/gec-llm/blob/main/scripts/gec/detokenize.py))
83
+ that also did whitespace and quote normalization, so you might also want to apply those regex rules.
84
 
 
85
 
86
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  **BibTeX:**
89
+ ````
90
+ @inproceedings{luhtaru-etal-2024-err,
91
+ title = "To Err Is Human, but Llamas Can Learn It Too",
92
+ author = "Luhtaru, Agnes and
93
+ Purason, Taido and
94
+ Vainikko, Martin and
95
+ Del, Maksym and
96
+ Fishel, Mark",
97
+ editor = "Al-Onaizan, Yaser and
98
+ Bansal, Mohit and
99
+ Chen, Yun-Nung",
100
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
101
+ month = nov,
102
+ year = "2024",
103
+ address = "Miami, Florida, USA",
104
+ publisher = "Association for Computational Linguistics",
105
+ url = "https://aclanthology.org/2024.findings-emnlp.727",
106
+ doi = "10.18653/v1/2024.findings-emnlp.727",
107
+ pages = "12466--12481",
108
+ abstract = "This study explores enhancing grammatical error correction (GEC) through automatic error generation (AEG) using language models (LMs). Specifically, we fine-tune Llama 2 LMs for error generation and find that this approach yields synthetic errors akin to human errors. Next, we train GEC Llama models using these artificial errors and outperform previous state-of-the-art error correction models, with gains ranging between 0.8 and 6 F0.5 points across all tested languages (German, Ukrainian, and Estonian). Moreover, we demonstrate that generating errors by fine-tuning smaller sequence-to-sequence models and prompting large commercial LMs (GPT3.5 and GPT4) also results in synthetic errors beneficially affecting error generation models. We openly release trained models for error generation and correction as well as all the synthesized error datasets for the covered languages.",
109
+ }
110
+ ````
111
+
112
+ Arxiv link: [https://arxiv.org/abs/2403.05493](https://arxiv.org/abs/2403.05493)