|
"""PyTorch gLM2 model. |
|
|
|
Some modules adapted from: |
|
https://github.com/meta-llama/llama/blob/main/llama/model.py |
|
""" |
|
|
|
import torch |
|
from einops import rearrange, repeat |
|
from typing import Optional, Tuple, Union |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
MaskedLMOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from .configuration_glm2 import gLM2Config, gLM2EmbedConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def rotate_half(x, interleaved=False): |
|
if not interleaved: |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
else: |
|
x1, x2 = x[..., ::2], x[..., 1::2] |
|
return rearrange( |
|
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2 |
|
) |
|
|
|
|
|
def apply_rotary_emb_torch(x, cos, sin, interleaved=False): |
|
""" |
|
x: (batch_size, seqlen, nheads, headdim) |
|
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2) |
|
""" |
|
ro_dim = cos.shape[-1] * 2 |
|
assert ro_dim <= x.shape[-1] |
|
seqlen = x.shape[1] |
|
cos, sin = cos[:seqlen], sin[:seqlen] |
|
cos = repeat( |
|
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)" |
|
) |
|
sin = repeat( |
|
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)" |
|
) |
|
return torch.cat( |
|
[ |
|
x[..., :ro_dim] * cos + |
|
rotate_half(x[..., :ro_dim], interleaved) * sin, |
|
x[..., ro_dim:], |
|
], |
|
dim=-1, |
|
) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
""" |
|
Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py. |
|
Changed to use the torch version of apply_rotary_emb_func. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
base=10000.0, |
|
interleaved=False, |
|
scale_base=None, |
|
pos_idx_in_fp32=True, |
|
device=None, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.base = float(base) |
|
self.pos_idx_in_fp32 = pos_idx_in_fp32 |
|
|
|
inv_freq = self._compute_inv_freq(device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.interleaved = interleaved |
|
self.scale_base = scale_base |
|
scale = ( |
|
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) |
|
/ (1.4 * dim) |
|
if scale_base is not None |
|
else None |
|
) |
|
self.register_buffer("scale", scale, persistent=False) |
|
|
|
self._seq_len_cached = 0 |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
self._cos_k_cached = None |
|
self._sin_k_cached = None |
|
|
|
def _compute_inv_freq(self, device=None): |
|
return 1.0 / ( |
|
self.base |
|
** ( |
|
torch.arange(0, self.dim, 2, device=device, |
|
dtype=torch.float32) |
|
/ self.dim |
|
) |
|
) |
|
|
|
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): |
|
|
|
|
|
|
|
if ( |
|
seqlen > self._seq_len_cached |
|
or self._cos_cached is None |
|
or self._cos_cached.device != device |
|
or self._cos_cached.dtype != dtype |
|
or (self.training and self._cos_cached.is_inference()) |
|
): |
|
self._seq_len_cached = seqlen |
|
|
|
|
|
|
|
if self.pos_idx_in_fp32: |
|
t = torch.arange(seqlen, device=device, dtype=torch.float32) |
|
|
|
|
|
|
|
|
|
if self.inv_freq.dtype != torch.float32: |
|
inv_freq = self._compute_inv_freq(device=device) |
|
else: |
|
inv_freq = self.inv_freq |
|
else: |
|
t = torch.arange(seqlen, device=device, |
|
dtype=self.inv_freq.dtype) |
|
inv_freq = self.inv_freq |
|
|
|
|
|
freqs = torch.outer(t, inv_freq) |
|
if self.scale is None: |
|
self._cos_cached = torch.cos(freqs).to(dtype) |
|
self._sin_cached = torch.sin(freqs).to(dtype) |
|
else: |
|
power = ( |
|
torch.arange( |
|
seqlen, dtype=self.scale.dtype, device=self.scale.device |
|
) |
|
- seqlen // 2 |
|
) / self.scale_base |
|
scale = self.scale.to(device=power.device) ** rearrange( |
|
power, "s -> s 1" |
|
) |
|
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(dtype) |
|
self._sin_cached = (torch.sin(freqs) * scale).to(dtype) |
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) |
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) |
|
|
|
def forward( |
|
self, |
|
qkv: torch.Tensor, |
|
max_seqlen: Optional[int] = None, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
qkv: (batch, seqlen, 3, nheads, headdim) |
|
""" |
|
seqlen = qkv.shape[1] |
|
if seqlen > self._seq_len_cached: |
|
self._update_cos_sin_cache( |
|
seqlen, device=qkv.device, dtype=qkv.dtype) |
|
elif max_seqlen is not None: |
|
self._update_cos_sin_cache( |
|
max_seqlen, device=qkv.device, dtype=qkv.dtype) |
|
q_rot = apply_rotary_emb_torch( |
|
qkv[:, :, 0], self._cos_cached, self._sin_cached, self.interleaved |
|
) |
|
k_rot = apply_rotary_emb_torch( |
|
qkv[:, :, 1], self._cos_cached, self._sin_cached, self.interleaved |
|
) |
|
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2) |
|
|
|
|
|
|
|
def rmsnorm_func(hidden_states, weight, variance_epsilon): |
|
"""Apply the root mean square normalization.""" |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon) |
|
return (weight * hidden_states).to(input_dtype) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
"""Root mean square normalization.""" |
|
|
|
def __init__(self, dim, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
self.register_buffer( |
|
"variance_epsilon", |
|
torch.tensor(eps), |
|
persistent=False, |
|
) |
|
|
|
def forward(self, hidden_states): |
|
return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon) |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Multi-head attention module.""" |
|
|
|
def __init__(self, config: gLM2Config): |
|
super().__init__() |
|
self.n_heads = config.heads |
|
self.head_dim = config.dim // config.heads |
|
|
|
self.wqkv = nn.Linear(config.dim, self.n_heads * |
|
self.head_dim * 3, bias=False) |
|
self.wo = nn.Linear(config.heads * self.head_dim, |
|
config.dim, bias=False) |
|
|
|
self.rotary_emb = RotaryEmbedding(self.head_dim) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
bsz, seqlen, h_size = x.shape |
|
qkv = self.wqkv(x) |
|
|
|
qkv = qkv.view(bsz, seqlen, 3, self.n_heads, self.head_dim) |
|
qkv = self.rotary_emb(qkv) |
|
|
|
|
|
qkv = torch.transpose(qkv, 3, 1) |
|
q = qkv[:, :, 0] |
|
k = qkv[:, :, 1] |
|
v = qkv[:, :, 2] |
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, None, None, :] |
|
attention_mask = attention_mask.expand( |
|
bsz, self.n_heads, seqlen, seqlen |
|
).bool() |
|
|
|
output = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=attention_mask |
|
) |
|
output = output.permute(0, 2, 1, 3).contiguous() |
|
|
|
output = output.view(bsz, seqlen, h_size) |
|
return self.wo(output) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
hidden_dim: int, |
|
multiple_of: int, |
|
ffn_dim_multiplier: Optional[float], |
|
): |
|
""" |
|
SwiGLU FeedForward module. |
|
|
|
Args: |
|
dim (int): Input dimension. |
|
hidden_dim (int): Hidden dimension of the feedforward layer. |
|
multiple_of (int): Value to ensure hidden dimension is a multiple of this value. |
|
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. |
|
""" |
|
super().__init__() |
|
hidden_dim = int(2 * hidden_dim / 3) |
|
|
|
if ffn_dim_multiplier is not None: |
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim) |
|
hidden_dim = multiple_of * \ |
|
((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
|
self.w1 = nn.Linear(dim, hidden_dim, bias=False) |
|
self.w2 = nn.Linear(hidden_dim, dim, bias=False) |
|
self.w3 = nn.Linear(dim, hidden_dim, bias=False) |
|
|
|
def forward(self, x): |
|
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, config: gLM2Config): |
|
super().__init__() |
|
self.n_heads = config.heads |
|
self.dim = config.dim |
|
self.head_dim = config.dim // config.heads |
|
self.attention = Attention(config) |
|
self.feed_forward = FeedForward( |
|
dim=config.dim, |
|
hidden_dim=4 * config.dim, |
|
multiple_of=config.swiglu_multiple_of, |
|
ffn_dim_multiplier=config.ffn_dim_multiplier, |
|
) |
|
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
r = self.attention(self.attention_norm( |
|
x), attention_mask=attention_mask) |
|
h = x + r |
|
r = self.feed_forward(self.ffn_norm(h)) |
|
out = h + r |
|
return out |
|
|
|
|
|
class TransformerLayers(nn.Module): |
|
def __init__(self, config: gLM2Config): |
|
super().__init__() |
|
self.config = config |
|
self.layers = torch.nn.ModuleList( |
|
[TransformerBlock(config=config) for _ in range(config.depth)] |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.FloatTensor, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
return_all_hiddens: bool = False, |
|
): |
|
if x.shape[-1] != self.config.dim: |
|
raise ValueError( |
|
f"Input feature dim should be {self.config.dim}, but input has shape {x.shape}" |
|
) |
|
hiddens = [] |
|
for layer in self.layers: |
|
x = layer(x, attention_mask=attention_mask) |
|
if return_all_hiddens: |
|
hiddens.append(x) |
|
|
|
if return_all_hiddens: |
|
return x, hiddens |
|
return x |
|
|
|
|
|
class gLM2PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
config_class = gLM2Config |
|
base_model_prefix = "glm2" |
|
supports_gradient_checkpointing = False |
|
|
|
|
|
def _init_weights(module, initializer_range=0.02): |
|
if isinstance(module, nn.Linear): |
|
nn.init.normal_(module.weight, std=initializer_range) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, std=initializer_range) |
|
if module.padding_idx is not None: |
|
nn.init.zeros_(module.weight[module.padding_idx]) |
|
|
|
|
|
class gLM2Model(gLM2PreTrainedModel): |
|
"""gLM2 Model.""" |
|
|
|
def __init__(self, config: gLM2Config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) |
|
self.encoder = TransformerLayers(config) |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutput]: |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
h = self.tok_embeddings(input_ids) |
|
if output_hidden_states: |
|
sequence_output, all_hidden_states = self.encoder( |
|
h, attention_mask, return_all_hiddens=True) |
|
else: |
|
sequence_output = self.encoder(h, attention_mask) |
|
all_hidden_states = None |
|
|
|
if not return_dict: |
|
return (sequence_output, all_hidden_states) |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=sequence_output, |
|
hidden_states=all_hidden_states, |
|
|
|
) |
|
|
|
|
|
class MeanPooling(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, embeds: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): |
|
"""Applies mean pooling. |
|
|
|
Args: |
|
embeds: [..., seq_len, hidden_dim]. |
|
attention_mask: [..., seq_len]. |
|
|
|
Returns: |
|
Outputs of shape [..., hidden_dim]. |
|
""" |
|
if attention_mask is None: |
|
return torch.mean(embeds, dim=-2) |
|
mask = attention_mask.bool().unsqueeze(-1) |
|
embeds = torch.where(mask, embeds, 0.0) |
|
embeds = torch.sum(embeds, -2) |
|
embeds /= torch.clamp(torch.sum(mask, dim=-2, dtype=embeds.dtype), min=1.0) |
|
return embeds |
|
|
|
|
|
class gLM2ForEmbedding(gLM2PreTrainedModel): |
|
"""gLM2 Embedding Model.""" |
|
config_class = gLM2EmbedConfig |
|
|
|
def __init__(self, config: gLM2EmbedConfig): |
|
super().__init__(config) |
|
self.glm2 = gLM2Model(config) |
|
self.pool = MeanPooling() |
|
self.projection = nn.Linear(config.dim, config.projection_dim, bias=False) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: |
|
|
|
hidden_states = self.glm2( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
).last_hidden_state |
|
|
|
embeds = self.pool(hidden_states, attention_mask) |
|
embeds = self.projection(embeds) |
|
return BaseModelOutputWithPooling( |
|
pooler_output=embeds, |
|
) |
|
|
|
|
|
class gLM2ForMaskedLM(gLM2PreTrainedModel): |
|
|
|
def __init__(self, config: gLM2Config): |
|
super().__init__(config) |
|
|
|
self.glm2 = gLM2Model(config) |
|
self.lm_head = gLM2LMHead(config) |
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.glm2( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(prediction_scores.device) |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class gLM2LMHead(nn.Module): |
|
"""gLM2 head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.proj_output = nn.Linear( |
|
config.dim, config.vocab_size, bias=False) |
|
|
|
def forward(self, features): |
|
return self.proj_output(self.norm(features)) |