File size: 3,563 Bytes
66c4a0c 7d101fb 66c4a0c 7d101fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
license: apache-2.0
base_model: Alignment-Lab-AI/Alignment-Lab-AIlonger
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Eros-BETA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: Alignment-Lab-AI/Alignment-Lab-AIlonger
load_in_8bit: false
load_in_4bit: false
strict: false
tokenizer_type: LlamaTokenizer
datasets:
- path: PygmalionAI/spice
type: sharegpt
conversation: chatml
- path: PygmalionAI/NYROS
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: /workspace/disk2/2prepath2
val_set_size: 0.05
output_dir: /workspace/disk2/Eros2-b
eval_sample_packing: true
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
torch_compile: true
hf_use_auth_token: true
hub_strategy: all_checkpoints
hub_model_id: PygmalionAI/Eros-BETA
hub_private_repo: true
push_to_hub: true
wandb_project: Erosium-b
wandb_entity:
wandb_watch: all
overwrite_output_dir: true
wandb_name:
wandb_log_model:
save_safetensors: true
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
amsgrad: true
max_grad_norm: 1
lr_scheduler: 'cosine'
lr_scheduler_kwargs:
num_cycles: 6
learning_rate: 0.00005
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
train_on_inputs: false
group_by_length: true
neftune_noise_alpha: 6
bf16: auto
fp16:
tf32: false
seed: 314159
early_stopping_patience:
local_rank:
logging_steps: 1
log_level: debug
xformers_attention:
flash_attention: true
warmup_steps:
eval_per_epoch: 0.25
save_steps: 0.20
debug:
deepspeed: ./deepspeed_configs/zero2.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
```
</details><br>
# Eros-BETA
This model is a fine-tuned version of [Alignment-Lab-AI/Alignment-Lab-AIlonger](https://huggingface.co/Alignment-Lab-AI/Alignment-Lab-AIlonger) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 314159
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.267 | 1.02 | 224 | 1.3057 |
| 1.1657 | 2.02 | 448 | 1.2184 |
| 1.062 | 3.02 | 672 | 1.1664 |
| 0.8812 | 3.94 | 880 | 1.1394 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
|