--- license: apache-2.0 base_model: Alignment-Lab-AI/Alignment-Lab-AIlonger tags: - axolotl - generated_from_trainer model-index: - name: Eros-BETA results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: Alignment-Lab-AI/Alignment-Lab-AIlonger load_in_8bit: false load_in_4bit: false strict: false tokenizer_type: LlamaTokenizer datasets: - path: PygmalionAI/spice type: sharegpt conversation: chatml - path: PygmalionAI/NYROS type: sharegpt conversation: chatml chat_template: chatml dataset_prepared_path: /workspace/disk2/2prepath2 val_set_size: 0.05 output_dir: /workspace/disk2/Eros2-b eval_sample_packing: true sequence_len: 16384 sample_packing: true pad_to_sequence_len: true torch_compile: true hf_use_auth_token: true hub_strategy: all_checkpoints hub_model_id: PygmalionAI/Eros-BETA hub_private_repo: true push_to_hub: true wandb_project: Erosium-b wandb_entity: wandb_watch: all overwrite_output_dir: true wandb_name: wandb_log_model: save_safetensors: true gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit amsgrad: true max_grad_norm: 1 lr_scheduler: 'cosine' lr_scheduler_kwargs: num_cycles: 6 learning_rate: 0.00005 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false train_on_inputs: false group_by_length: true neftune_noise_alpha: 6 bf16: auto fp16: tf32: false seed: 314159 early_stopping_patience: local_rank: logging_steps: 1 log_level: debug xformers_attention: flash_attention: true warmup_steps: eval_per_epoch: 0.25 save_steps: 0.20 debug: deepspeed: ./deepspeed_configs/zero2.json weight_decay: 0.05 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" tokens: - "<|im_start|>" - "<|im_end|>" ```

# Eros-BETA This model is a fine-tuned version of [Alignment-Lab-AI/Alignment-Lab-AIlonger](https://huggingface.co/Alignment-Lab-AI/Alignment-Lab-AIlonger) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 314159 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 3 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.267 | 1.02 | 224 | 1.3057 | | 1.1657 | 2.02 | 448 | 1.2184 | | 1.062 | 3.02 | 672 | 1.1664 | | 0.8812 | 3.94 | 880 | 1.1394 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0