--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-360M tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: toxicity-scorer-smollm2-360m-freeze results: [] --- # toxicity-scorer-smollm2-360m-freeze This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7434 - F1: 0.6049 - Accuracy: 0.5261 - Precision: 0.7390 - Recall: 0.5261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 44 - eval_batch_size: 44 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 352 - total_eval_batch_size: 352 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:------:|:--------:|:---------:|:------:| | No log | 0 | 0 | 0.7481 | 0.6025 | 0.5231 | 0.7383 | 0.5231 | | 0.7489 | 1.5277 | 5000 | 0.7434 | 0.6049 | 0.5261 | 0.7390 | 0.5261 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3