tcapelle commited on
Commit
b55ccaf
·
verified ·
1 Parent(s): b9447fc

Model save

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: tasksource/deberta-small-long-nli
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - f1
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: toxicity-scorer
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # toxicity-scorer
21
+
22
+ This model is a fine-tuned version of [tasksource/deberta-small-long-nli](https://huggingface.co/tasksource/deberta-small-long-nli) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1972
25
+ - F1: 0.9191
26
+ - Accuracy: 0.9205
27
+ - Precision: 0.9181
28
+ - Recall: 0.9205
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - distributed_type: multi-GPU
52
+ - num_devices: 8
53
+ - total_train_batch_size: 128
54
+ - total_eval_batch_size: 128
55
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
56
+ - lr_scheduler_type: cosine
57
+ - lr_scheduler_warmup_ratio: 0.1
58
+ - num_epochs: 3
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
63
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:|
64
+ | No log | 0 | 0 | 0.7648 | 0.5092 | 0.4397 | 0.8431 | 0.4397 |
65
+ | 0.2012 | 1.0 | 8816 | 0.1993 | 0.9180 | 0.9200 | 0.9167 | 0.9200 |
66
+ | 0.1929 | 2.0 | 17632 | 0.1973 | 0.9192 | 0.9204 | 0.9182 | 0.9204 |
67
+ | 0.1991 | 3.0 | 26448 | 0.1972 | 0.9191 | 0.9205 | 0.9181 | 0.9205 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.46.3
73
+ - Pytorch 2.5.1
74
+ - Datasets 3.1.0
75
+ - Tokenizers 0.20.3