--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy base_model: microsoft/swinv2-tiny-patch4-window8-256 model-index: - name: histo_train_swin results: - task: type: image-classification name: Image Classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - type: accuracy value: 0.9 name: Accuracy --- # histo_train_swin This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2654 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0305 | 16.67 | 100 | 0.2654 | 0.9 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2