File size: 13,711 Bytes
47990ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""
Geneformer multi-task cell classifier.

**Input data:**

| Single-cell transcriptomes as Geneformer rank value encodings with cell state labels for each task in Geneformer .dataset format (generated from single-cell RNAseq data by tokenizer.py). Must contain "unique_cell_id" column for logging.

**Usage:**

.. code-block :: python

    >>> from geneformer import MTLClassifier
    >>> mc = MTLClassifier(task_columns = ["task1", "task2"],
    ...                 study_name = "mtl",
    ...                 pretrained_path = "/path/pretrained/model",
    ...                 train_path = "/path/train/set",
    ...                 val_path = "/path/eval/set",
    ...                 test_path = "/path/test/set",
    ...                 model_save_path = "/results/directory/save_path",
    ...                 trials_result_path = "/results/directory/results.txt",
    ...                 results_dir = "/results/directory",
    ...                 tensorboard_log_dir = "/results/tblogdir",
    ...                 hyperparameters = hyperparameters)
    >>> mc.run_optuna_study()
    >>> mc.load_and_evaluate_test_model()
    >>> mc.save_model_without_heads()
"""

import logging
import os

from .mtl import eval_utils, train_utils, utils

logger = logging.getLogger(__name__)


class MTLClassifier:
    valid_option_dict = {
        "task_columns": {list},
        "train_path": {None, str},
        "val_path": {None, str},
        "test_path": {None, str},
        "pretrained_path": {None, str},
        "model_save_path": {None, str},
        "results_dir": {None, str},
        "batch_size": {None, int},
        "n_trials": {None, int},
        "study_name": {None, str},
        "max_layers_to_freeze": {None, dict},
        "epochs": {None, int},
        "tensorboard_log_dir": {None, str},
        "use_data_parallel": {None, bool},
        "use_attention_pooling": {None, bool},
        "use_task_weights": {None, bool},
        "hyperparameters": {None, dict},
        "manual_hyperparameters": {None, dict},
        "use_manual_hyperparameters": {None, bool},
        "use_wandb": {None, bool},
        "wandb_project": {None, str},
        "gradient_clipping": {None, bool},
        "max_grad_norm": {None, int, float},
        "seed": {None, int},
        "trials_result_path": {None, str},
    }

    def __init__(
        self,
        task_columns=None,
        train_path=None,
        val_path=None,
        test_path=None,
        pretrained_path=None,
        model_save_path=None,
        results_dir=None,
        trials_result_path=None,
        batch_size=4,
        n_trials=15,
        study_name="mtl",
        max_layers_to_freeze=None,
        epochs=1,
        tensorboard_log_dir="/results/tblogdir",
        use_data_parallel=False,
        use_attention_pooling=True,
        use_task_weights=True,
        hyperparameters=None,  # Default is None
        manual_hyperparameters=None,  # Default is None
        use_manual_hyperparameters=False,  # Default is False
        use_wandb=False,
        wandb_project=None,
        gradient_clipping=False,
        max_grad_norm=None,
        seed=42,  # Default seed value
    ):
        """
        Initialize Geneformer multi-task classifier.
        
        **Parameters:**
        
        task_columns : list
            | List of tasks for cell state classification
            | Input data columns are labeled with corresponding task names
        study_name : None, str
            | Study name for labeling output files
        pretrained_path : None, str
            | Path to pretrained model
        train_path : None, str
            | Path to training dataset with task columns and "unique_cell_id" column
        val_path : None, str
            | Path to validation dataset with task columns and "unique_cell_id" column
        test_path : None, str
            | Path to test dataset with task columns and "unique_cell_id" column
        model_save_path : None, str
            | Path to directory to save output model (either full model or model without heads)
        trials_result_path : None, str
            | Path to directory to save hyperparameter tuning trial results
        results_dir : None, str
            | Path to directory to save results
        tensorboard_log_dir : None, str
            | Path to directory for Tensorboard logging results
        use_data_parallel : None, bool
            | Whether to use data parallelization
        use_attention_pooling : None, bool
            | Whether to use attention pooling
        use_task_weights : None, bool
            | Whether to use task weights
        batch_size : None, int
            | Batch size to use
        n_trials : None, int
            | Number of trials for hyperparameter tuning
        epochs : None, int
            | Number of epochs for training
        max_layers_to_freeze : None, dict
            | Dictionary with keys "min" and "max" indicating the min and max layers to freeze from fine-tuning (int)
            | 0: no layers will be frozen; 2: first two layers will be frozen; etc.
        hyperparameters : None, dict
            | Dictionary of categorical max and min for each hyperparameter for tuning
            | For example:
            | {"learning_rate": {"type":"float", "low":"1e-5", "high":"1e-3", "log":True}, "task_weights": {...}, ...}
        manual_hyperparameters : None, dict
            | Dictionary of manually set value for each hyperparameter
            | For example:
            | {"learning_rate": 0.001, "task_weights": [1, 1], ...}
        use_manual_hyperparameters : None, bool
            | Whether to use manually set hyperparameters
        use_wandb : None, bool
            | Whether to use Weights & Biases for logging
        wandb_project : None, str
            | Weights & Biases project name
        gradient_clipping : None, bool
            | Whether to use gradient clipping
        max_grad_norm : None, int, float
            | Maximum norm for gradient clipping
        seed : None, int
            | Random seed
        """

        self.task_columns = task_columns
        self.train_path = train_path
        self.val_path = val_path
        self.test_path = test_path
        self.pretrained_path = pretrained_path
        self.model_save_path = model_save_path
        self.results_dir = results_dir
        self.trials_result_path = trials_result_path
        self.batch_size = batch_size
        self.n_trials = n_trials
        self.study_name = study_name

        if max_layers_to_freeze is None:
            # Dynamically determine the range of layers to freeze
            layer_freeze_range = utils.get_layer_freeze_range(pretrained_path)
            self.max_layers_to_freeze = {"min": 1, "max": layer_freeze_range["max"]}
        else:
            self.max_layers_to_freeze = max_layers_to_freeze

        self.epochs = epochs
        self.tensorboard_log_dir = tensorboard_log_dir
        self.use_data_parallel = use_data_parallel
        self.use_attention_pooling = use_attention_pooling
        self.use_task_weights = use_task_weights
        self.hyperparameters = (
            hyperparameters
            if hyperparameters is not None
            else {
                "learning_rate": {
                    "type": "float",
                    "low": 1e-5,
                    "high": 1e-3,
                    "log": True,
                },
                "warmup_ratio": {"type": "float", "low": 0.005, "high": 0.01},
                "weight_decay": {"type": "float", "low": 0.01, "high": 0.1},
                "dropout_rate": {"type": "float", "low": 0.0, "high": 0.7},
                "lr_scheduler_type": {"type": "categorical", "choices": ["cosine"]},
                "task_weights": {"type": "float", "low": 0.1, "high": 2.0},
            }
        )
        self.manual_hyperparameters = (
            manual_hyperparameters
            if manual_hyperparameters is not None
            else {
                "learning_rate": 0.001,
                "warmup_ratio": 0.01,
                "weight_decay": 0.1,
                "dropout_rate": 0.1,
                "lr_scheduler_type": "cosine",
                "use_attention_pooling": False,
                "task_weights": [1, 1],
                "max_layers_to_freeze": 2,
            }
        )
        self.use_manual_hyperparameters = use_manual_hyperparameters
        self.use_wandb = use_wandb
        self.wandb_project = wandb_project
        self.gradient_clipping = gradient_clipping
        self.max_grad_norm = max_grad_norm
        self.seed = seed

        if self.use_manual_hyperparameters:
            logger.warning(
                "Hyperparameter tuning is highly recommended for optimal results."
            )

        self.validate_options()

        # set up output directories
        if self.results_dir is not None:
            self.trials_results_path = f"{self.results_dir}/results.txt".replace(
                "//", "/"
            )

        for output_dir in [self.model_save_path, self.results_dir]:
            if not os.path.exists(output_dir):
                os.makedirs(output_dir)

        self.config = {
            key: value
            for key, value in self.__dict__.items()
            if key in self.valid_option_dict
        }

    def validate_options(self):
        # confirm arguments are within valid options and compatible with each other
        for attr_name, valid_options in self.valid_option_dict.items():
            attr_value = self.__dict__[attr_name]
            if not isinstance(attr_value, (list, dict)):
                if attr_value in valid_options:
                    continue
            valid_type = False
            for option in valid_options:
                if (option in [int, float, list, dict, bool, str]) and isinstance(
                    attr_value, option
                ):
                    valid_type = True
                    break
            if valid_type:
                continue
            logger.error(
                f"Invalid option for {attr_name}. "
                f"Valid options for {attr_name}: {valid_options}"
            )
            raise ValueError(
                f"Invalid option for {attr_name}. Valid options for {attr_name}: {valid_options}"
            )

    def run_manual_tuning(self):
        """
        Manual hyperparameter tuning and multi-task fine-tuning of pretrained model.
        """
        required_variable_names = [
            "train_path",
            "val_path",
            "pretrained_path",
            "model_save_path",
            "results_dir",
        ]
        required_variables = [
            self.train_path,
            self.val_path,
            self.pretrained_path,
            self.model_save_path,
            self.results_dir,
        ]
        req_var_dict = dict(zip(required_variable_names, required_variables))
        self.validate_additional_options(req_var_dict)

        if not self.use_manual_hyperparameters:
            raise ValueError(
                "Manual hyperparameters are not enabled. Set use_manual_hyperparameters to True."
            )

        # Ensure manual_hyperparameters are set in the config
        self.config["manual_hyperparameters"] = self.manual_hyperparameters
        self.config["use_manual_hyperparameters"] = True

        train_utils.run_manual_tuning(self.config)

    def validate_additional_options(self, req_var_dict):
        missing_variable = False
        for variable_name, variable in req_var_dict.items():
            if variable is None:
                logger.warning(
                    f"Please provide value to MTLClassifier for required variable {variable_name}"
                )
                missing_variable = True
        if missing_variable is True:
            raise ValueError("Missing required variables for MTLClassifier")

    def run_optuna_study(
        self,
    ):
        """
        Hyperparameter optimization and/or multi-task fine-tuning of pretrained model.
        """

        required_variable_names = [
            "train_path",
            "val_path",
            "pretrained_path",
            "model_save_path",
            "results_dir",
        ]
        required_variables = [
            self.train_path,
            self.val_path,
            self.pretrained_path,
            self.model_save_path,
            self.results_dir,
        ]
        req_var_dict = dict(zip(required_variable_names, required_variables))
        self.validate_additional_options(req_var_dict)

        train_utils.run_optuna_study(self.config)

    def load_and_evaluate_test_model(
        self,
    ):
        """
        Loads previously fine-tuned multi-task model and evaluates on test data.
        """

        required_variable_names = ["test_path", "model_save_path", "results_dir"]
        required_variables = [self.test_path, self.model_save_path, self.results_dir]
        req_var_dict = dict(zip(required_variable_names, required_variables))
        self.validate_additional_options(req_var_dict)

        eval_utils.load_and_evaluate_test_model(self.config)

    # def save_model_without_heads(
    #     self,
    # ):
    #     """
    #     Save previously fine-tuned multi-task model without classification heads.
    #     """

    #     required_variable_names = ["model_save_path"]
    #     required_variables = [self.model_save_path]
    #     req_var_dict = dict(zip(required_variable_names, required_variables))
    #     self.validate_additional_options(req_var_dict)

    #     utils.save_model_without_heads(
    #         os.path.join(self.model_save_path, "GeneformerMultiTask")
    #     )