Geneformer / geneformer /mtl /train_utils.py
Alejandro Velez
tdc geneformer
47990ca
raw
history blame
5.45 kB
import random
from .data import get_data_loader, preload_and_process_data
from .imports import *
from .model import GeneformerMultiTask
from .train import objective, train_model
from .utils import save_model
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def run_manual_tuning(config):
# Set seed for reproducibility
set_seed(config["seed"])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
(
train_dataset,
train_cell_id_mapping,
val_dataset,
val_cell_id_mapping,
num_labels_list,
) = preload_and_process_data(config)
train_loader = get_data_loader(train_dataset, config["batch_size"])
val_loader = get_data_loader(val_dataset, config["batch_size"])
# Print the manual hyperparameters being used
print("\nManual hyperparameters being used:")
for key, value in config["manual_hyperparameters"].items():
print(f"{key}: {value}")
print() # Add an empty line for better readability
# Use the manual hyperparameters
for key, value in config["manual_hyperparameters"].items():
config[key] = value
# Train the model
val_loss, trained_model = train_model(
config,
device,
train_loader,
val_loader,
train_cell_id_mapping,
val_cell_id_mapping,
num_labels_list,
)
print(f"\nValidation loss with manual hyperparameters: {val_loss}")
# Save the trained model
model_save_directory = os.path.join(
config["model_save_path"], "GeneformerMultiTask"
)
save_model(trained_model, model_save_directory)
# Save the hyperparameters
hyperparams_to_save = {
**config["manual_hyperparameters"],
"dropout_rate": config["dropout_rate"],
"use_task_weights": config["use_task_weights"],
"task_weights": config["task_weights"],
"max_layers_to_freeze": config["max_layers_to_freeze"],
"use_attention_pooling": config["use_attention_pooling"],
}
hyperparams_path = os.path.join(model_save_directory, "hyperparameters.json")
with open(hyperparams_path, "w") as f:
json.dump(hyperparams_to_save, f)
print(f"Manual hyperparameters saved to {hyperparams_path}")
return val_loss
def run_optuna_study(config):
# Set seed for reproducibility
set_seed(config["seed"])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
(
train_dataset,
train_cell_id_mapping,
val_dataset,
val_cell_id_mapping,
num_labels_list,
) = preload_and_process_data(config)
train_loader = get_data_loader(train_dataset, config["batch_size"])
val_loader = get_data_loader(val_dataset, config["batch_size"])
if config["use_manual_hyperparameters"]:
train_model(
config,
device,
train_loader,
val_loader,
train_cell_id_mapping,
val_cell_id_mapping,
num_labels_list,
)
else:
objective_with_config_and_data = functools.partial(
objective,
train_loader=train_loader,
val_loader=val_loader,
train_cell_id_mapping=train_cell_id_mapping,
val_cell_id_mapping=val_cell_id_mapping,
num_labels_list=num_labels_list,
config=config,
device=device,
)
study = optuna.create_study(
direction="minimize", # Minimize validation loss
study_name=config["study_name"],
# storage=config["storage"],
load_if_exists=True,
)
study.optimize(objective_with_config_and_data, n_trials=config["n_trials"])
# After finding the best trial
best_params = study.best_trial.params
best_task_weights = study.best_trial.user_attrs["task_weights"]
print("Saving the best model and its hyperparameters...")
# Saving model as before
best_model = GeneformerMultiTask(
config["pretrained_path"],
num_labels_list,
dropout_rate=best_params["dropout_rate"],
use_task_weights=config["use_task_weights"],
task_weights=best_task_weights,
)
# Get the best model state dictionary
best_model_state_dict = study.best_trial.user_attrs["model_state_dict"]
# Remove the "module." prefix from the state dictionary keys if present
best_model_state_dict = {
k.replace("module.", ""): v for k, v in best_model_state_dict.items()
}
# Load the modified state dictionary into the model, skipping unexpected keys
best_model.load_state_dict(best_model_state_dict, strict=False)
model_save_directory = os.path.join(
config["model_save_path"], "GeneformerMultiTask"
)
save_model(best_model, model_save_directory)
# Additionally, save the best hyperparameters and task weights
hyperparams_path = os.path.join(model_save_directory, "hyperparameters.json")
with open(hyperparams_path, "w") as f:
json.dump({**best_params, "task_weights": best_task_weights}, f)
print(f"Best hyperparameters and task weights saved to {hyperparams_path}")