File size: 2,076 Bytes
f8c798f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_voxpopuli_nl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_nl
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3776
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 125
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.4834 | 2.3529 | 250 | 0.4367 |
| 0.4405 | 4.7059 | 500 | 0.4013 |
| 0.4323 | 7.0588 | 750 | 0.3927 |
| 0.4244 | 9.4118 | 1000 | 0.3877 |
| 0.4186 | 11.7647 | 1250 | 0.3844 |
| 0.4176 | 14.1176 | 1500 | 0.3831 |
| 0.4137 | 16.4706 | 1750 | 0.3807 |
| 0.4098 | 18.8235 | 2000 | 0.3804 |
| 0.413 | 21.1765 | 2250 | 0.3768 |
| 0.4094 | 23.5294 | 2500 | 0.3781 |
| 0.409 | 25.8824 | 2750 | 0.3789 |
| 0.4028 | 28.2353 | 3000 | 0.3776 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|