File size: 33,789 Bytes
cef6874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from typing import List, Optional, Tuple, Union
from transformers.cache_utils import Cache
import requests
from PIL import Image
from io import BytesIO
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from .got_vision_b import build_GOT_vit_b
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import dataclasses
###

DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
DEFAULT_IM_START_TOKEN = '<img>'
DEFAULT_IM_END_TOKEN = '</img>'

from enum import auto, Enum
class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()
    MPT = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "<|im_end|>"
    sep2: str = None
    version: str = "Unknown"

    skip_next: bool = False

    def get_prompt(self):
        if self.sep_style == SeparatorStyle.SINGLE:
            ret = self.system + self.sep + '\n'
            for role, message in self.messages:
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
            return ret
        if self.sep_style == SeparatorStyle.MPT:
            if self.system:
                ret = self.system + self.sep 
            else:
                ret = ''
            for role, message in self.messages:
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + message + self.sep
                else:
                    ret += role
            return ret
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")


    def append_message(self, role, message):
        self.messages.append([role, message])

    def copy(self):
        return Conversation(
            system=self.system,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2)



class KeywordsStoppingCriteria(StoppingCriteria):
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
        self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
        self.tokenizer = tokenizer
        self.start_len = None
        self.input_ids = input_ids

    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        if self.start_len is None:
            self.start_len = self.input_ids.shape[1]
        else:
            for keyword_id in self.keyword_ids:
                if output_ids[0, -1] == keyword_id:
                    return True
            outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
            for keyword in self.keywords:
                if keyword in outputs:
                    return True
        return False
    

class GOTImageEvalProcessor:
    def __init__(self, image_size=384, mean=None, std=None):
        if mean is None:
            mean = (0.48145466, 0.4578275, 0.40821073)
        if std is None:
            std = (0.26862954, 0.26130258, 0.27577711)

        self.normalize = transforms.Normalize(mean, std)

        self.transform = transforms.Compose(
            [
                transforms.Resize(
                    (image_size, image_size), interpolation=InterpolationMode.BICUBIC
                ),
                transforms.ToTensor(),
                self.normalize,
            ]
        )
    def __call__(self, item):
        return self.transform(item)



class GOTConfig(Qwen2Config):
    model_type = "GOT"


class GOTQwenModel(Qwen2Model):
    config_class = GOTConfig

    def __init__(self, config: Qwen2Config):
        super(GOTQwenModel, self).__init__(config)

        self.vision_tower_high = build_GOT_vit_b()

        self.mm_projector_vary =  nn.Linear(1024, 1024)


    def initialize_vision_modules(
        self, 
        vision_tower,
        pretrained_stage1_model=None,
        freeze_vision_tower=False,
        use_im_start_end=False,
        vision_select_layer=-1,
        dtype=torch.float16,
        device="cpu"
    ):


        image_processor_high = GOTImageEvalProcessor(image_size=1024)
      
        self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)

        self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)


        image_token_len = 256

        self.config.vision_tower = vision_tower
        self.config.image_token_len = image_token_len

        self.config.use_im_start_end = True

        self.config.vision_select_layer = vision_select_layer
        self.config.freeze_vision_tower = freeze_vision_tower
        
        return dict(
            image_processor_high=image_processor_high,
            image_token_len=image_token_len,
        )
         
    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        # HACK: replace back original embeddings for LLaVA pretraining
        orig_embeds_params = getattr(self, 'orig_embeds_params', None)
        if orig_embeds_params is not None:
            with torch.no_grad():
                self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)


        vision_tower_high = getattr(self, 'vision_tower_high', None)


        if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
            use_im_start_end = getattr(self.config, "use_im_start_end", -1)

            vision_select_layer = getattr(self.config, "vision_select_layer", -1)
            im_patch_token = getattr(self.config, "im_patch_token", -1)
            im_start_token = getattr(self.config, "im_start_token", -1)
            im_end_token = getattr(self.config, "im_end_token", -1)
            freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)

            im_patch_token = 151859

            im_start_token = 151857

            im_end_token = 151858
            
            image_features = []
            
            for image in images:
                P, C, H, W = image.shape
                if P == 1:
                    with torch.set_grad_enabled(False):
                        cnn_feature = vision_tower_high(image)
                        cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024
                    image_feature = self.mm_projector_vary(cnn_feature)
                    image_features.append(image_feature)

                else:
                    image_patches = torch.unbind(image)
                    image_patches_features = []
                    for image_patch in image_patches:
                        image_p = torch.stack([image_patch])
                        
                        with torch.set_grad_enabled(False):
                            cnn_feature_p = vision_tower_high(image_p)
                            cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
                        image_feature_p = self.mm_projector_vary(cnn_feature_p)
                        image_patches_features.append(image_feature_p)
                    image_feature = torch.cat(image_patches_features, dim=1)
                    image_features.append(image_feature)


            dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
            dummy_image_features = dummy_image_features_2
            use_im_start_end = True
            new_input_embeds = []
            for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
                if (cur_input_ids == im_patch_token).sum() == 0:
                    cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
                    new_input_embeds.append(cur_input_embeds)
                    continue

                if use_im_start_end:
                    if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
                        raise ValueError("The number of image start tokens and image end tokens should be the same.")
                    
                    image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
                    for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
                        per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
                        num_patches = per_cur_image_features.shape[0]

                        if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
                            raise ValueError("The image end token should follow the image start token.")
                        
                        cur_input_embeds = torch.cat(
                            (
                                cur_input_embeds[:image_start_token_pos+1], 
                                per_cur_image_features, 
                                cur_input_embeds[image_start_token_pos + num_patches + 1:]
                            ), 
                            dim=0
                        )


                    new_input_embeds.append(cur_input_embeds)
                else:
                    raise NotImplementedError

            inputs_embeds = torch.stack(new_input_embeds, dim=0)

        return super(GOTQwenModel, self).forward(
            input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
            inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
            output_attentions=output_attentions, output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )



class GOTQwenForCausalLM(Qwen2ForCausalLM):
    config_class = GOTConfig
    # supports_gradient_checkpointing = True

    def __init__(self, config):
        super(Qwen2ForCausalLM, self).__init__(config)
        self.model = GOTQwenModel(config)

        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
        
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs  = self.model(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            images=images,
            return_dict=return_dict
            
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        # logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "images": kwargs.get("images", None),
            }
        )
        return model_inputs

    def initialize_vision_tokenizer(
        self, 
        tokenizer, 
        freeze_lm_model=False, 
        pretrained_stage1_model=None,
        device="cpu"
    ):
        config = self.get_model().config


        self.resize_token_embeddings(len(tokenizer))

        config.im_patch_token = 151859

        config.use_im_start_end = True

        if config.use_im_start_end:
            self.resize_token_embeddings(len(tokenizer))
            config.im_start_token, config.im_end_token = 151857, 151858

    def load_image(self, image_file):
        if image_file.startswith('http') or image_file.startswith('https'):
            response = requests.get(image_file)
            image = Image.open(BytesIO(response.content)).convert('RGB')
        else:
            image = Image.open(image_file).convert('RGB')

        # image = image_file
        return image

    def disable_torch_init(self):
        """
        Disable the redundant torch default initialization to accelerate model creation.
        """
        import torch
        setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
        setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)

    def chat(self, tokenizer, image_file, ocr_type, ocr_box='', ocr_color='', render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):

        self.disable_torch_init()


        image_processor_high =  GOTImageEvalProcessor(image_size=1024)

        use_im_start_end = True

        image_token_len = 256

        if gradio_input:
            image = image_file.copy()
        else:
            image = self.load_image(image_file)

        w, h = image.size
        
        if ocr_type == 'format':
            qs = 'OCR with format: '
        else:
            qs = 'OCR: '

        if ocr_box:
            bbox = eval(ocr_box)
            if len(bbox) == 2:
                bbox[0] = int(bbox[0]/w*1000)
                bbox[1] = int(bbox[1]/h*1000)
            if len(bbox) == 4:
                bbox[0] = int(bbox[0]/w*1000)
                bbox[1] = int(bbox[1]/h*1000)
                bbox[2] = int(bbox[2]/w*1000)
                bbox[3] = int(bbox[3]/h*1000)
            if ocr_type == 'format':
                qs = str(bbox) + ' ' + 'OCR with format: '
            else:
                qs = str(bbox) + ' ' + 'OCR: '

        if ocr_color:
            if ocr_type == 'format':
                qs = '[' + ocr_color + ']' + ' ' + 'OCR with format: '
            else:
                qs = '[' + ocr_color + ']' + ' ' + 'OCR: '

        if use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs 
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs


        conv_mpt = Conversation(
            system="""<|im_start|>system
        You should follow the instructions carefully and explain your answers in detail.""",
            # system = None,
            roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
            version="mpt",
            messages=(),
            offset=0,
            sep_style=SeparatorStyle.MPT,
            sep="<|im_end|>",
        )

        conv = conv_mpt.copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        if print_prompt:
            print(prompt)

        inputs = tokenizer([prompt])

        image_tensor_1 = image_processor_high(image)

        input_ids = torch.as_tensor(inputs.input_ids).cpu()

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

        if stream_flag:
            with torch.autocast("cpu", dtype=torch.bfloat16):
                output_ids = self.generate(
                    input_ids,
                    images=[image_tensor_1.unsqueeze(0).half().cpu()],
                    do_sample=False,
                    num_beams = 1,
                    no_repeat_ngram_size = 20,
                    streamer=streamer,
                    max_new_tokens=4096,
                    stopping_criteria=[stopping_criteria]
                    )
        else:
            with torch.autocast("cpu", dtype=torch.bfloat16):
                output_ids = self.generate(
                    input_ids,
                    images=[image_tensor_1.unsqueeze(0).half().cpu()],
                    do_sample=False,
                    num_beams = 1,
                    no_repeat_ngram_size = 20,
                    # streamer=streamer,
                    max_new_tokens=4096,
                    stopping_criteria=[stopping_criteria]
                    )
            
        outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
        
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()
        response_str = outputs

        if render:
            print('==============rendering===============')
            from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table

            if '**kern' in outputs:
                import verovio
                tk = verovio.toolkit()
                tk.loadData(outputs)
                tk.setOptions({"pageWidth": 2100, "footer": 'none',
            'barLineWidth': 0.5, 'beamMaxSlope': 15,
            'staffLineWidth': 0.2, 'spacingStaff': 6})
                tk.getPageCount()
                svg = tk.renderToSVG()
                svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")

                svg_to_html(svg, save_render_file)

            if ocr_type == 'format' and '**kern' not in outputs:

                
                if  '\\begin{tikzpicture}' not in outputs:
                    html_path_2 = save_render_file
                    right_num = outputs.count('\\right')
                    left_num = outputs.count('\left')

                    if right_num != left_num:
                        outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')


                    outputs = outputs.replace('"', '``').replace('$', '')

                    outputs_list = outputs.split('\n')
                    gt= ''
                    for out in outputs_list:
                        gt +=  '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n' 
                    
                    gt = gt[:-2]


                    lines = content_mmd_to_html
                    lines = lines.split("const text =")
                    new_web = lines[0] + 'const text ='  + gt  + lines[1]

                else:
                    html_path_2 = save_render_file
                    outputs = outputs.translate(translation_table)
                    outputs_list = outputs.split('\n')
                    gt= ''
                    for out in outputs_list:
                        if out:
                            if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
                                while out[-1] == ' ':
                                    out = out[:-1]
                                    if out is None:
                                        break
    
                                if out:
                                    if out[-1] != ';':
                                        gt += out[:-1] + ';\n'
                                    else:
                                        gt += out + '\n'
                            else:
                                gt += out + '\n'


                    lines = tik_html
                    lines = lines.split("const text =")
                    new_web = lines[0] + gt + lines[1]

                with open(html_path_2, 'w') as web_f_new:
                    web_f_new.write(new_web)
        return response_str

    def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
        
        def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
            best_ratio_diff = float('inf')
            best_ratio = (1, 1)
            area = width * height
            for ratio in target_ratios:
                target_aspect_ratio = ratio[0] / ratio[1]
                ratio_diff = abs(aspect_ratio - target_aspect_ratio)
                if ratio_diff < best_ratio_diff:
                    best_ratio_diff = ratio_diff
                    best_ratio = ratio
                elif ratio_diff == best_ratio_diff:
                    if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                        best_ratio = ratio
            # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
            return best_ratio
        
        orig_width, orig_height = image.size
        aspect_ratio = orig_width / orig_height

        # calculate the existing image aspect ratio
        target_ratios = set(
            (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
            i * j <= max_num and i * j >= min_num)
        # print(target_ratios)
        target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

        # find the closest aspect ratio to the target
        target_aspect_ratio = find_closest_aspect_ratio(
            aspect_ratio, target_ratios, orig_width, orig_height, image_size)

        # print(target_aspect_ratio)
        # calculate the target width and height
        target_width = image_size * target_aspect_ratio[0]
        target_height = image_size * target_aspect_ratio[1]
        blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

        # resize the image
        resized_img = image.resize((target_width, target_height))
        processed_images = []
        for i in range(blocks):
            box = (
                (i % (target_width // image_size)) * image_size,
                (i // (target_width // image_size)) * image_size,
                ((i % (target_width // image_size)) + 1) * image_size,
                ((i // (target_width // image_size)) + 1) * image_size
            )
            # split the image
            split_img = resized_img.crop(box)
            processed_images.append(split_img)
        assert len(processed_images) == blocks
        if use_thumbnail and len(processed_images) != 1:
            thumbnail_img = image.resize((image_size, image_size))
            processed_images.append(thumbnail_img)
        return processed_images


    def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
        # Model
        self.disable_torch_init()
        multi_page=False


        image_processor_high =  GOTImageEvalProcessor(image_size=1024)

        use_im_start_end = True


        image_token_len = 256

        image_list = []

        # if len(image_file_list)>1:
        #     multi_page = True

        if multi_page:
            qs = 'OCR with format across multi pages: '
            # only for png files
            # import glob
            # from natsort import natsorted
            # patches = glob.glob(image_file + '/*png')
            patches = image_file
            # patches = natsorted(patches)
            sub_images = []
            for sub_image in patches:
                sub_images.append(self.load_image(sub_image))

            ll = len(patches)
            # print(patches)
            # print("len ll: ", ll)

        else:
            if ocr_type == 'format':
                qs = 'OCR with format upon the patch reference: '
            else:
                qs = 'OCR upon the patch reference: '
            if gradio_input:
                img = image_file.copy()
            else:
                img = self.load_image(image_file)
            sub_images = self.dynamic_preprocess(img)
            ll = len(sub_images)

        for image in sub_images:
            image_tensor_1 = image_processor_high(image)
            image_list.append(image_tensor_1)


        image_list = torch.stack(image_list)

        print('====new images batch size======:  \n',image_list.shape)


        if use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs 
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs


        conv_mpt = Conversation(
            system="""<|im_start|>system
        You should follow the instructions carefully and explain your answers in detail.""",
            # system = None,
            roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
            version="mpt",
            messages=(),
            offset=0,
            sep_style=SeparatorStyle.MPT,
            sep="<|im_end|>",
        )

        conv = conv_mpt.copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        if print_prompt:
            print(prompt)

        inputs = tokenizer([prompt])

        input_ids = torch.as_tensor(inputs.input_ids).cpu()

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

        if stream_flag:
            with torch.autocast("cpu", dtype=torch.bfloat16):
                output_ids = self.generate(
                    input_ids,
                    images=[image_list.half().cpu()],
                    do_sample=False,
                    num_beams = 1,
                    # no_repeat_ngram_size = 20,
                    streamer=streamer,
                    max_new_tokens=4096,
                    stopping_criteria=[stopping_criteria]
                    )
        else:
            with torch.autocast("cpu", dtype=torch.bfloat16):
                output_ids = self.generate(
                    input_ids,
                    images=[image_list.half().cpu()],
                    do_sample=False,
                    num_beams = 1,
                    # no_repeat_ngram_size = 20,
                    # streamer=streamer,
                    max_new_tokens=4096,
                    stopping_criteria=[stopping_criteria]
                    )

        outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
        
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()   
        response_str = outputs

        if render:
            print('==============rendering===============')
            from .render_tools import content_mmd_to_html
            html_path_2 = save_render_file
            right_num = outputs.count('\\right')
            left_num = outputs.count('\left')

            if right_num != left_num:
                outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')


            outputs = outputs.replace('"', '``').replace('$', '')

            outputs_list = outputs.split('\n')
            gt= ''
            for out in outputs_list:
                gt +=  '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n' 
            
            gt = gt[:-2]

            lines = content_mmd_to_html
            lines = lines.split("const text =")
            new_web = lines[0] + 'const text ='  + gt  + lines[1]
                
            with open(html_path_2, 'w') as web_f_new:
                web_f_new.write(new_web)

        return response_str