tdnathmlenthusiast commited on
Commit
65493a6
1 Parent(s): cef6874

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md CHANGED
@@ -1,3 +1,108 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: image-text-to-text
3
+ library_name: transformers
4
+ language:
5
+ - multilingual
6
+ tags:
7
+ - got
8
+ - vision-language
9
+ - ocr2.0
10
+ - custom_code
11
  license: apache-2.0
12
  ---
13
+
14
+ <h1>General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
15
+ </h1>
16
+
17
+ [🔋Online Demo](https://huggingface.co/spaces/ucaslcl/GOT_online) | [🌟GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/) | [📜Paper](https://arxiv.org/abs/2409.01704)</a>
18
+
19
+
20
+ [Haoran Wei*](https://scholar.google.com/citations?user=J4naK0MAAAAJ&hl=en), Chenglong Liu*, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, [Zheng Ge](https://joker316701882.github.io/), Liang Zhao, [Jianjian Sun](https://scholar.google.com/citations?user=MVZrGkYAAAAJ&hl=en), [Yuang Peng](https://scholar.google.com.hk/citations?user=J0ko04IAAAAJ&hl=zh-CN&oi=ao), Chunrui Han, [Xiangyu Zhang](https://scholar.google.com/citations?user=yuB-cfoAAAAJ&hl=en)
21
+
22
+
23
+
24
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6653eee7a2d7a882a805ab95/QCEFY-M_YG3Bp5fn1GQ8X.jpeg)
25
+
26
+
27
+
28
+ ## Usage
29
+ Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
30
+ ```
31
+ torch==2.0.1
32
+ torchvision==0.15.2
33
+ transformers==4.37.2
34
+ tiktoken==0.6.0
35
+ verovio==4.3.1
36
+ accelerate==0.28.0
37
+ ```
38
+
39
+
40
+ ```python
41
+ from transformers import AutoModel, AutoTokenizer
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
44
+ model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cpu', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
45
+ model = model.eval().cpu()
46
+
47
+
48
+ # input your test image
49
+ image_file = 'xxx.jpg'
50
+
51
+ # plain texts OCR
52
+ res = model.chat(tokenizer, image_file, ocr_type='ocr')
53
+
54
+ # format texts OCR:
55
+ # res = model.chat(tokenizer, image_file, ocr_type='format')
56
+
57
+ # fine-grained OCR:
58
+ # res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='')
59
+ # res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='')
60
+ # res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='')
61
+ # res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='')
62
+
63
+ # multi-crop OCR:
64
+ # res = model.chat_crop(tokenizer, image_file, ocr_type='ocr')
65
+ # res = model.chat_crop(tokenizer, image_file, ocr_type='format')
66
+
67
+ # render the formatted OCR results:
68
+ # res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html')
69
+
70
+ print(res)
71
+
72
+
73
+ ```
74
+ More details about 'ocr_type', 'ocr_box', 'ocr_color', and 'render' can be found at our GitHub.
75
+ Our training codes are available at our [GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/).
76
+
77
+
78
+
79
+ ## More Multimodal Projects
80
+
81
+ 👏 Welcome to explore more multimodal projects of our team:
82
+
83
+ [Vary](https://github.com/Ucas-HaoranWei/Vary) | [Fox](https://github.com/ucaslcl/Fox) | [OneChart](https://github.com/LingyvKong/OneChart)
84
+
85
+ ## Citation
86
+
87
+ If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
88
+
89
+ ```bib
90
+ @article{wei2024general,
91
+ title={General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model},
92
+ author={Wei, Haoran and Liu, Chenglong and Chen, Jinyue and Wang, Jia and Kong, Lingyu and Xu, Yanming and Ge, Zheng and Zhao, Liang and Sun, Jianjian and Peng, Yuang and others},
93
+ journal={arXiv preprint arXiv:2409.01704},
94
+ year={2024}
95
+ }
96
+ @article{liu2024focus,
97
+ title={Focus Anywhere for Fine-grained Multi-page Document Understanding},
98
+ author={Liu, Chenglong and Wei, Haoran and Chen, Jinyue and Kong, Lingyu and Ge, Zheng and Zhu, Zining and Zhao, Liang and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
99
+ journal={arXiv preprint arXiv:2405.14295},
100
+ year={2024}
101
+ }
102
+ @article{wei2023vary,
103
+ title={Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models},
104
+ author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yang, Jinrong and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
105
+ journal={arXiv preprint arXiv:2312.06109},
106
+ year={2023}
107
+ }
108
+ ```