--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 - precision model-index: - name: distilbert-base-uncased_emotion_ft_0416 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.94 - name: F1 type: f1 value: 0.9399689929524555 - name: Precision type: precision value: 0.9171180948520368 --- # distilbert-base-uncased_emotion_ft_0416 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1559 - Accuracy: 0.94 - F1: 0.9400 - Precision: 0.9171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | 0.7983 | 1.0 | 250 | 0.2761 | 0.91 | 0.9103 | 0.8773 | | 0.2021 | 2.0 | 500 | 0.1690 | 0.935 | 0.9358 | 0.9022 | | 0.1342 | 3.0 | 750 | 0.1606 | 0.9385 | 0.9386 | 0.9256 | | 0.1034 | 4.0 | 1000 | 0.1471 | 0.937 | 0.9367 | 0.9236 | | 0.0828 | 5.0 | 1250 | 0.1572 | 0.9355 | 0.9355 | 0.9132 | | 0.0716 | 6.0 | 1500 | 0.1547 | 0.942 | 0.9415 | 0.9305 | | 0.0595 | 7.0 | 1750 | 0.1584 | 0.9385 | 0.9385 | 0.9170 | | 0.0514 | 8.0 | 2000 | 0.1559 | 0.94 | 0.9400 | 0.9171 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2