--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-ft-cv-cy-en results: [] datasets: - techiaith/commonvoice_18_0_cy_en language: - cy - en pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-ft-cv-cy-en This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the [techiaith/commonvoice_18_0_cy_en](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy_en) dataset. Both the English and Welsh data have been used to fine-tune the whisper model for transcribing both languages as well as improved language detection. It achieves a success rate of **98.86% for language detection** on recordings from a [Common Voice bilingual test set](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy_en/viewer/default/test) While, it achieves the following WER results for transcribing using the same test set: - Welsh: 26.20 - English: 15.37 - Average: 20.70 N.B. the desired transcript language is not given to the fine-tuned model during testing. ## Usage ```python from transformers import pipeline transcriber = pipeline("automatic-speech-recognition", model="techiaith/whisper-large-v3-ft-cv-cy-en") result = transcriber() print (result) ``` `{'text': 'Mae hen wlad fy nhadau yn annwyl i mi.'}`