Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dependencies
|
2 |
+
"""pip install torch pillow requests diffusers imageio gradio==3.4 httpx==0.23.2 transformers accelerate"""
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import imageio
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from diffusers import StableDiffusionInpaintPipeline
|
11 |
+
|
12 |
+
def perform_inpainting(prompt):
|
13 |
+
# save_images()
|
14 |
+
|
15 |
+
|
16 |
+
# Ensure CPU inference
|
17 |
+
img_path = "Original Image.png"
|
18 |
+
mask_path= "Mask Image.png"
|
19 |
+
device = "cuda"
|
20 |
+
model_name="runwayml/stable-diffusion-v1-5"
|
21 |
+
torch_dtype = torch.float16
|
22 |
+
# Create the inpainting pipeline
|
23 |
+
pipeline = create_inpaint_pipeline(model_name)
|
24 |
+
pipeline = pipeline.to(device) # Explicitly move model to CPU
|
25 |
+
|
26 |
+
# Load and pre-process images
|
27 |
+
try:
|
28 |
+
init_image = Image.open(img_path).convert("RGB").resize((512, 512))
|
29 |
+
mask_image = Image.open(mask_path).convert("RGB").resize((512, 512))
|
30 |
+
except FileNotFoundError:
|
31 |
+
print(f"Error: Image files '{img_path}' or '{mask_path}' not found.")
|
32 |
+
return None
|
33 |
+
|
34 |
+
print("Processing the image...")
|
35 |
+
|
36 |
+
# Perform inpainting
|
37 |
+
try:
|
38 |
+
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
39 |
+
image.save("Inpainted_img.png")
|
40 |
+
return image
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error during inpainting: {e}")
|
43 |
+
return None
|
44 |
+
|
45 |
+
def create_inpaint_pipeline(model_name):
|
46 |
+
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
47 |
+
model_name,
|
48 |
+
torch_dtype=torch.float16,
|
49 |
+
)
|
50 |
+
return pipeline
|
51 |
+
|
52 |
+
# if __name__ == "__main__":
|
53 |
+
# generated_image = perform_inpainting()
|
54 |
+
|
55 |
+
# if generated_image is not None:
|
56 |
+
# generated_image.show()
|
57 |
+
# # Optionally save the generated image
|
58 |
+
# generated_image.save("inpainted_image.png")
|
59 |
+
|
60 |
+
|
61 |
+
def Mask(img):
|
62 |
+
"""
|
63 |
+
Function to process the input image and generate a mask.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
img (dict): Dictionary containing the base image and the mask image.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
tuple: A tuple containing the base image and the mask image.
|
70 |
+
"""
|
71 |
+
try:
|
72 |
+
# Save the mask image to a file
|
73 |
+
imageio.imwrite("Original Image.png",img["image"])
|
74 |
+
imageio.imwrite("Mask Image.png", img["mask"])
|
75 |
+
|
76 |
+
return img["image"], img["mask"]
|
77 |
+
except KeyError as e:
|
78 |
+
# Handle case where expected keys are not in the input dictionary
|
79 |
+
return f"Key error: {e}", None
|
80 |
+
except Exception as e:
|
81 |
+
# Handle any other unexpected errors
|
82 |
+
return f"An error occurred: {e}", None
|
83 |
+
|
84 |
+
|
85 |
+
def main():
|
86 |
+
# Create the Gradio interface
|
87 |
+
with gr.Blocks() as demo:
|
88 |
+
with gr.Row():
|
89 |
+
img = gr.Image(tool="sketch", label="Paint Image", show_label=True)
|
90 |
+
img1 = gr.Image(label="Original Image")
|
91 |
+
img2 = gr.Image(label="Mask Image", show_label=True)
|
92 |
+
|
93 |
+
btn = gr.Button()
|
94 |
+
# Set the button click action
|
95 |
+
btn.click(Mask, inputs=img, outputs=[img1, img2])
|
96 |
+
|
97 |
+
# with gr.Blocks():
|
98 |
+
with gr.Row():
|
99 |
+
prompt = gr.Textbox(label="Enter the prompt")
|
100 |
+
button = gr.Button("Click")
|
101 |
+
output_image = gr.Image(label="Generated Image")
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
button.click(perform_inpainting, inputs=prompt,outputs=output_image)
|
107 |
+
|
108 |
+
# Launch the Gradio interface
|
109 |
+
demo.launch()
|
110 |
+
|
111 |
+
|
112 |
+
if __name__=='__main__':
|
113 |
+
main()
|