Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,95 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
<p align="center">
|
3 |
+
<img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
|
4 |
+
</p><p></p>
|
5 |
+
|
6 |
+
<p align="center">
|
7 |
+
 <a href="https://github.com/Tencent/Tencent-Hunyuan-7B"><b>GITHUB</b></a>  
|
8 |
+
|
9 |
+
## 模型介绍
|
10 |
+
|
11 |
+
本次混元发布的7B模型:[Hunyuan-7B-Pretrain](https://huggingface.co/tencent/Hunyuan-7B-Pretrain)和[Hunyuan-7B-Instruct](https://huggingface.co/tencent/Hunyuan-7B-Instruct) ,采用了更优的数据配比与训练,拥有强劲的性能,在计算与性能间取得良好平衡的优势从众多规模的语言模型中脱颖而出,是目前最强的中文7B Dense模型之一。
|
12 |
+
### 技术优势介绍
|
13 |
+
|
14 |
+
#### 模型
|
15 |
+
|
16 |
+
- 使用了GQA的同时,将长文能力拓展到256K。
|
17 |
+
|
18 |
+
#### 推理框架
|
19 |
+
- 模型支持 TRT-LLM-backend 和 [vLLM-backend](https://github.com/quinnrong94/vllm/tree/dev_hunyuan) 推理框架。本次优先开源vLLM框架,TRT-LLM将在近期推出。
|
20 |
+
|
21 |
+
#### 训练框架
|
22 |
+
- Hunyuan-Large开源模型已经支持huggingface格式,支持用户采用hf-deepspeed框架进行模型精调。详情可以参照[Tencent-Hunyuan-Large](https://github.com/Tencent/Tencent-Hunyuan-Large) 。
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
## 新闻
|
27 |
+
* 2025.1 我们在Hugging Face开源了**Hunyuan-7B-Pretrain** 、 **Hunyuan-7B-Instruct** 。
|
28 |
+
<br>
|
29 |
+
|
30 |
+
|
31 |
+
## Benchmark评估榜单
|
32 |
+
|
33 |
+
注:下列Benchmark均为 TRT-LLM-backend 测评得出
|
34 |
+
**Hunyuan-7B-Pretrain**
|
35 |
+
|
36 |
+
| | Qwen2.5-7B | Llama3-8B | OLMO2-7B | HunYuan-7B-V2 |
|
37 |
+
|------------------|------------|------------|----------|---------------|
|
38 |
+
| MMLU | 74.26 | 66.95 | 63.7 | **75.37** |
|
39 |
+
| MMLU-Pro | 46.17 | 34.04 | 31 | **47.54** |
|
40 |
+
| MMLU-CF | **61.01** | 55.21 | 52.94 | 59.62 |
|
41 |
+
| MMLU-Redux | 73.47 | 66.44 | 63.74 | **74.54** |
|
42 |
+
| BBH | 70.4 | 62.16 | 38.01 | **70.77** |
|
43 |
+
| HellaSwag | 75.82 | 78.24 | 61.97 | **80.77** |
|
44 |
+
| WinoGrande | 69.69 | 73.64 | **74.43** | 71.51 |
|
45 |
+
| PIQA | 79.33 | 80.52 | **80.63** | 81.45 |
|
46 |
+
| SIQA | 77.48 | 61.05 | 65.2 | **79.73** |
|
47 |
+
| NaturalQuestions | 31.77 | 35.43 | **36.9** | 33.52 |
|
48 |
+
| DROP | 68.2 | 60.13 | 60.8 | **68.63** |
|
49 |
+
| ARC-C | 91.64 | 77.59 | 74.92 | **91.97** |
|
50 |
+
| TriviaQA | 69.31 | **78.61** | 78 | 74.31 |
|
51 |
+
| Chinese-SimpleQA | 30.37 | 19.4 | 7.35 | **30.51** |
|
52 |
+
| SimpleQA | 4.98 | **7.68** | 4.51 | 3.73 |
|
53 |
+
| CMMLU | 81.39 | 50.25 | 38.79 | **82.19** |
|
54 |
+
| C-Eval | 81.11 | 50.4 | 38.53 | **82.12** |
|
55 |
+
| C3 | 71.77 | 61.5 | 54 | **79.07** |
|
56 |
+
| GSM8K | 82.71 | 57.54 | 67.5 | **93.33** |
|
57 |
+
| MATH | 49.6 | 18.45 | 19 | **62.15** |
|
58 |
+
| CMATH | 84.33 | 52.83 | 44 | **88.5** |
|
59 |
+
| HumanEval | 57.93 | 35.98 | 15.24 | **59.15** |
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
**Hunyuan-7B-Instruct**
|
65 |
+
|
66 |
+
| Model | Qwen2.5-7B-Instruct | Llama-3-8B-Instruct | OLMo-2-1124-7B-DPO | Hunyuan-7B-Instruct |
|
67 |
+
|-------------|---------------------|---------------------|--------------------|-------------------|
|
68 |
+
| ARC-C | **89.83** | 82.4 | - | 88.81 |
|
69 |
+
| BBH | 66.24 | - | 46.6 | **76.47** |
|
70 |
+
| CEval | 76.82 | - | - | **81.8** |
|
71 |
+
| CMMLU | 78.55 | - | - | **82.29** |
|
72 |
+
| DROP_F1 | 80.63 | - | 60.5 | **82.96** |
|
73 |
+
| GPQA | 36.87 | 34.6 | - | **47.98** |
|
74 |
+
| Gsm8k | 80.14 | 80.6 | 85.1 | **90.14** |
|
75 |
+
| HellaSwag | 83.34 | - | - | **86.57** |
|
76 |
+
| HumanEval | **84.8** | 60.4 | - | 84.0 |
|
77 |
+
| MATH | **72.86** | - | 32.5 | 70.64 |
|
78 |
+
| MMLU | 72.36 | 68.5 | 61.3 | **79.18** |
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
## 快速开始
|
83 |
+
|
84 |
+
您可以参考[Tencent-Hunyuan-Large](https://github.com/Tencent/Tencent-Hunyuan-Large) 中的内容进行快速上手,训练推理代码使用本github仓库提供版本即可。
|
85 |
+
|
86 |
+
### 性能评估:
|
87 |
+
|
88 |
+
本部分介绍采用vLLM部署各个模型的效���测试结果,包括不同Batchsize下的推理速度(tokens/s)。
|
89 |
+
|
90 |
+
| 推理框架 | 模型 | 部署卡数(卡型1) | input_length | batch=1 | batch=4 |
|
91 |
+
|------|-----------------------------|-----------|-------------------------|---------------------|----------------------|
|
92 |
+
| vLLM | hunyuan-7B | 1 | 2048 | 78.9 | 279.5 |
|
93 |
+
|
94 |
+
## 联系我们
|
95 |
+
如果你想给我们的研发和产品团队留言,欢迎联系我们腾讯混元LLM团队。你可以通过邮件(hunyuan_opensource@tencent.com)联系我们。
|