Text-to-Video
noaltian commited on
Commit
b1e8c83
Β·
verified Β·
1 Parent(s): 799a108

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -12
README.md CHANGED
@@ -7,16 +7,31 @@ license_link: LICENSE
7
  <!-- ## **HunyuanVideo** -->
8
 
9
  <p align="center">
10
- <img src="assets/logo.png" height=100>
11
  </p>
12
 
13
  # HunyuanVideo: A Systematic Framework For Large Video Generation Model Training
14
 
 
 
 
 
 
 
 
 
15
  -----
16
 
17
  This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring HunyuanVideo. You can find more visualizations on our [project page](https://aivideo.hunyuan.tencent.com).
18
 
19
- > [**HunyuanVideo: A Systematic Framework For Large Video Generation Model Training**](https://arxiv.org/abs/2405.08748) <br>
 
 
 
 
 
 
 
20
 
21
  ## πŸ”₯πŸ”₯πŸ”₯ News!!
22
  * Dec 3, 2024: πŸ€— We release the inference code and model weights of HunyuanVideo.
@@ -36,6 +51,7 @@ This repo contains PyTorch model definitions, pre-trained weights and inference/
36
 
37
  ## Contents
38
  - [HunyuanVideo: A Systematic Framework For Large Video Generation Model Training](#hunyuanvideo--a-systematic-framework-for-large-video-generation-model-training)
 
39
  - [πŸ”₯πŸ”₯πŸ”₯ News!!](#-news!!)
40
  - [πŸ“‘ Open-source Plan](#-open-source-plan)
41
  - [Contents](#contents)
@@ -71,7 +87,7 @@ using a large language model, and used as the condition. Gaussian noise and cond
71
  input, our generate model generates an output latent, which is decoded to images or videos through
72
  the 3D VAE decoder.
73
  <p align="center">
74
- <img src="assets/overall.png" height=300>
75
  </p>
76
 
77
  ## πŸŽ‰ **HunyuanVideo Key Features**
@@ -83,7 +99,7 @@ tokens and feed them into subsequent Transformer blocks for effective multimodal
83
  This design captures complex interactions between visual and semantic information, enhancing
84
  overall model performance.
85
  <p align="center">
86
- <img src="assets/backbone.png" height=350>
87
  </p>
88
 
89
  ### **MLLM Text Encoder**
@@ -91,13 +107,13 @@ Some previous text-to-video model typically use pretrainednCLIP and T5-XXL as te
91
  Compared with CLIP, MLLM has been demonstrated superior ability in image detail description
92
  and complex reasoning; (iii) MLLM can play as a zero-shot learner by following system instructions prepended to user prompts, helping text features pay more attention to key information. In addition, MLLM is based on causal attention while T5-XXL utilizes bidirectional attention that produces better text guidance for diffusion models. Therefore, we introduce an extra bidirectional token refiner for enhacing text features.
93
  <p align="center">
94
- <img src="assets/text_encoder.png" height=275>
95
  </p>
96
 
97
  ### **3D VAE**
98
  HunyuanVideo trains a 3D VAE with CausalConv3D to compress pixel-space videos and images into a compact latent space. We set the compression ratios of video length, space and channel to 4, 8 and 16 respectively. This can significantly reduce the number of tokens for the subsequent diffusion transformer model, allowing us to train videos at the original resolution and frame rate.
99
  <p align="center">
100
- <img src="assets/3dvae.png" height=150>
101
  </p>
102
 
103
  ### **Prompt Rewrite**
@@ -253,14 +269,13 @@ We list some more useful configurations for easy usage:
253
 
254
 
255
  ## πŸ”— BibTeX
256
- If you find [HunyuanVideo](https://arxiv.org/abs/2405.08748) useful for your research and applications, please cite using this BibTeX:
257
 
258
  ```BibTeX
259
- @misc{XX,
260
- title={HunyuanVideo: A Systematic Framework For Large Video Generation Model Training},
261
- author={Hunyuan Foundation Model Team},
262
- year={2025},
263
- eprint={XXX},
264
  archivePrefix={arXiv},
265
  primaryClass={cs.CV}
266
  }
 
7
  <!-- ## **HunyuanVideo** -->
8
 
9
  <p align="center">
10
+ <img src="https://aivideo.hunyuan.tencent.com/download/HunyuanVideo/material/logo.png" height=100>
11
  </p>
12
 
13
  # HunyuanVideo: A Systematic Framework For Large Video Generation Model Training
14
 
15
+ <div align="center">
16
+ <a href="https://github.com/Tencent/HunyuanVideo"><img src="https://img.shields.io/static/v1?label=HunyuanVideo Code&message=Github&color=blue&logo=github-pages"></a> &ensp;
17
+ <a href="https://aivideo.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> &ensp;
18
+ <a href="https://github.com/Tencent/HunyuanVideo/blob/main/assets/hunyuanvideo.pdf"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Arxiv:HunyuanVideo&color=red&logo=arxiv"></a> &ensp;
19
+ <a href="https://huggingface.co/tencent/HunyuanVideo"><img src="https://img.shields.io/static/v1?label=HunyuanVideo&message=HuggingFace&color=yellow"></a> &ensp; &ensp;
20
+ <a href="https://huggingface.co/tencent/HunyuanVideo-PromptRewrite"><img src="https://img.shields.io/static/v1?label=HunyuanVideo-PromptRewrite&message=HuggingFace&color=yellow"></a> &ensp; &ensp;
21
+ </div>
22
+
23
  -----
24
 
25
  This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring HunyuanVideo. You can find more visualizations on our [project page](https://aivideo.hunyuan.tencent.com).
26
 
27
+ > [**HunyuanVideo: A Systematic Framework For Large Video Generation Model Training**](https://github.com/Tencent/HunyuanVideo/blob/main/assets/hunyuanvideo.pdf) <br>
28
+
29
+ ## πŸŽ₯ Demo
30
+ <div align="center">
31
+ <video src="https://github.com/user-attachments/assets/f37925a3-7d42-40c9-8a9b-5a010c7198e2" width="50%">
32
+ </div>
33
+
34
+ Due to the limitation of github page, the video is compressed. The original video can be downloaded from [here](https://aivideo.hunyuan.tencent.com/download/HunyuanVideo/material/demo.mov).
35
 
36
  ## πŸ”₯πŸ”₯πŸ”₯ News!!
37
  * Dec 3, 2024: πŸ€— We release the inference code and model weights of HunyuanVideo.
 
51
 
52
  ## Contents
53
  - [HunyuanVideo: A Systematic Framework For Large Video Generation Model Training](#hunyuanvideo--a-systematic-framework-for-large-video-generation-model-training)
54
+ - [πŸŽ₯ Demo](#-demo)
55
  - [πŸ”₯πŸ”₯πŸ”₯ News!!](#-news!!)
56
  - [πŸ“‘ Open-source Plan](#-open-source-plan)
57
  - [Contents](#contents)
 
87
  input, our generate model generates an output latent, which is decoded to images or videos through
88
  the 3D VAE decoder.
89
  <p align="center">
90
+ <img src="https://aivideo.hunyuan.tencent.com/download/HunyuanVideo/material/overall.png" height=300>
91
  </p>
92
 
93
  ## πŸŽ‰ **HunyuanVideo Key Features**
 
99
  This design captures complex interactions between visual and semantic information, enhancing
100
  overall model performance.
101
  <p align="center">
102
+ <img src="https://aivideo.hunyuan.tencent.com/download/HunyuanVideo/material/backbone.png" height=350>
103
  </p>
104
 
105
  ### **MLLM Text Encoder**
 
107
  Compared with CLIP, MLLM has been demonstrated superior ability in image detail description
108
  and complex reasoning; (iii) MLLM can play as a zero-shot learner by following system instructions prepended to user prompts, helping text features pay more attention to key information. In addition, MLLM is based on causal attention while T5-XXL utilizes bidirectional attention that produces better text guidance for diffusion models. Therefore, we introduce an extra bidirectional token refiner for enhacing text features.
109
  <p align="center">
110
+ <img src="https://aivideo.hunyuan.tencent.com/download/HunyuanVideo/material/text_encoder.png" height=275>
111
  </p>
112
 
113
  ### **3D VAE**
114
  HunyuanVideo trains a 3D VAE with CausalConv3D to compress pixel-space videos and images into a compact latent space. We set the compression ratios of video length, space and channel to 4, 8 and 16 respectively. This can significantly reduce the number of tokens for the subsequent diffusion transformer model, allowing us to train videos at the original resolution and frame rate.
115
  <p align="center">
116
+ <img src="https://aivideo.hunyuan.tencent.com/download/HunyuanVideo/material/3dvae.png" height=150>
117
  </p>
118
 
119
  ### **Prompt Rewrite**
 
269
 
270
 
271
  ## πŸ”— BibTeX
272
+ If you find [HunyuanVideo](https://github.com/Tencent/HunyuanVideo/blob/main/assets/hunyuanvideo.pdf) useful for your research and applications, please cite using this BibTeX:
273
 
274
  ```BibTeX
275
+ @misc{kong2024hunyuanvideo,
276
+ title={HunyuanVideo: A Systematic Framework For Large Video Generative Models},
277
+ author={Weijie Kong, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Qi Tian, Jianwei Zhang, Kathrina Wu, Qin Lin, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, Caesar Zhong},
278
+ year={2024},
 
279
  archivePrefix={arXiv},
280
  primaryClass={cs.CV}
281
  }