--- license: apache-2.0 datasets: - nicholasKluge/instruct-aira-dataset language: - en metrics: - accuracy library_name: transformers tags: - alignment - instruction tuned - text generation - conversation - assistant - TensorBlock - GGUF pipeline_tag: text-generation widget: - text: <|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|> example_title: Machine Learning - text: <|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|> example_title: Ethics - text: <|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|> example_title: Advise inference: parameters: repetition_penalty: 1.2 temperature: 0.2 top_k: 30 top_p: 0.3 max_new_tokens: 200 length_penalty: 0.3 early_stopping: true co2_eq_emissions: emissions: 1690 source: CodeCarbon training_type: fine-tuning geographical_location: United States of America hardware_used: NVIDIA A100-SXM4-40GB base_model: nicholasKluge/Aira-2-1B5 ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## nicholasKluge/Aira-2-1B5 - GGUF This repo contains GGUF format model files for [nicholasKluge/Aira-2-1B5](https://huggingface.co/nicholasKluge/Aira-2-1B5). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Aira-2-1B5-Q2_K.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q2_K.gguf) | Q2_K | 0.845 GB | smallest, significant quality loss - not recommended for most purposes | | [Aira-2-1B5-Q3_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q3_K_S.gguf) | Q3_K_S | 0.845 GB | very small, high quality loss | | [Aira-2-1B5-Q3_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q3_K_M.gguf) | Q3_K_M | 0.966 GB | very small, high quality loss | | [Aira-2-1B5-Q3_K_L.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q3_K_L.gguf) | Q3_K_L | 1.027 GB | small, substantial quality loss | | [Aira-2-1B5-Q4_0.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q4_0.gguf) | Q4_0 | 0.906 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Aira-2-1B5-Q4_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q4_K_S.gguf) | Q4_K_S | 1.037 GB | small, greater quality loss | | [Aira-2-1B5-Q4_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q4_K_M.gguf) | Q4_K_M | 1.110 GB | medium, balanced quality - recommended | | [Aira-2-1B5-Q5_0.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q5_0.gguf) | Q5_0 | 1.087 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Aira-2-1B5-Q5_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q5_K_S.gguf) | Q5_K_S | 1.149 GB | large, low quality loss - recommended | | [Aira-2-1B5-Q5_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q5_K_M.gguf) | Q5_K_M | 1.286 GB | large, very low quality loss - recommended | | [Aira-2-1B5-Q6_K.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q6_K.gguf) | Q6_K | 1.519 GB | very large, extremely low quality loss | | [Aira-2-1B5-Q8_0.gguf](https://huggingface.co/tensorblock/Aira-2-1B5-GGUF/blob/main/Aira-2-1B5-Q8_0.gguf) | Q8_0 | 1.630 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Aira-2-1B5-GGUF --include "Aira-2-1B5-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Aira-2-1B5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```