File size: 12,350 Bytes
5502a34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
---
language:
- en
license: apache-2.0
tags:
- text-generation
- TensorBlock
- GGUF
base_model: Felladrin/Llama-160M-Chat-v1
datasets:
- ehartford/wizard_vicuna_70k_unfiltered
- totally-not-an-llm/EverythingLM-data-V3
- Open-Orca/SlimOrca-Dedup
- databricks/databricks-dolly-15k
- THUDM/webglm-qa
widget:
- messages:
- role: system
content: You are a helpful assistant, who answers with empathy.
- role: user
content: Got a question for you!
- role: assistant
content: Sure! What's it?
- role: user
content: Why do you love cats so much!? π
- messages:
- role: system
content: You are a helpful assistant who answers user's questions with empathy.
- role: user
content: Who is Mona Lisa?
- messages:
- role: system
content: You are a helpful assistant who provides concise responses.
- role: user
content: Heya!
- role: assistant
content: Hi! How may I help you today?
- role: user
content: I need to build a simple website. Where should I start learning about
web development?
- messages:
- role: user
content: Invited some friends to come home today. Give me some ideas for games
to play with them!
- messages:
- role: system
content: You are a helpful assistant who answers user's questions with details
and curiosity.
- role: user
content: What are some potential applications for quantum computing?
- messages:
- role: system
content: You are a helpful assistant who gives creative responses.
- role: user
content: Write the specs of a game about mages in a fantasy world.
- messages:
- role: system
content: You are a helpful assistant who answers user's questions with details.
- role: user
content: Tell me about the pros and cons of social media.
- messages:
- role: system
content: You are a helpful assistant who answers user's questions with confidence.
- role: user
content: What is a dog?
- role: assistant
content: A dog is a four-legged, domesticated animal that is a member of the class
Mammalia, which includes all mammals. Dogs are known for their loyalty, playfulness,
and ability to be trained for various tasks. They are also used for hunting,
herding, and as service animals.
- role: user
content: What is the color of an apple?
inference:
parameters:
max_new_tokens: 250
penalty_alpha: 0.5
top_k: 4
repetition_penalty: 1.01
model-index:
- name: Llama-160M-Chat-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 24.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 35.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.13
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.16
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 15.75
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 3.17
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.0
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.01
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.17
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.51
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## Felladrin/Llama-160M-Chat-v1 - GGUF
This repo contains GGUF format model files for [Felladrin/Llama-160M-Chat-v1](https://huggingface.co/Felladrin/Llama-160M-Chat-v1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine β
</a>
</div>
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama-160M-Chat-v1-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q2_K.gguf) | Q2_K | 0.066 GB | smallest, significant quality loss - not recommended for most purposes |
| [Llama-160M-Chat-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q3_K_S.gguf) | Q3_K_S | 0.075 GB | very small, high quality loss |
| [Llama-160M-Chat-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q3_K_M.gguf) | Q3_K_M | 0.080 GB | very small, high quality loss |
| [Llama-160M-Chat-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q3_K_L.gguf) | Q3_K_L | 0.085 GB | small, substantial quality loss |
| [Llama-160M-Chat-v1-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q4_0.gguf) | Q4_0 | 0.092 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Llama-160M-Chat-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q4_K_S.gguf) | Q4_K_S | 0.092 GB | small, greater quality loss |
| [Llama-160M-Chat-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q4_K_M.gguf) | Q4_K_M | 0.096 GB | medium, balanced quality - recommended |
| [Llama-160M-Chat-v1-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q5_0.gguf) | Q5_0 | 0.108 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Llama-160M-Chat-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q5_K_S.gguf) | Q5_K_S | 0.108 GB | large, low quality loss - recommended |
| [Llama-160M-Chat-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q5_K_M.gguf) | Q5_K_M | 0.110 GB | large, very low quality loss - recommended |
| [Llama-160M-Chat-v1-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q6_K.gguf) | Q6_K | 0.125 GB | very large, extremely low quality loss |
| [Llama-160M-Chat-v1-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q8_0.gguf) | Q8_0 | 0.161 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Llama-160M-Chat-v1-GGUF --include "Llama-160M-Chat-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Llama-160M-Chat-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|