File size: 5,835 Bytes
a4614ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
license: apache-2.0
language:
- tr
base_model: Orbina/Orbita-v0.1
tags:
- TensorBlock
- GGUF
model-index:
- name: Orbita-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge TR
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc
      value: 41.97
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag TR
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc
      value: 48
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU TR
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.51
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA TR
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: acc
      value: 50.78
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande TR
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.16
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k TR
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.41
      name: accuracy
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## Orbina/Orbita-v0.1 - GGUF

This repo contains GGUF format model files for [Orbina/Orbita-v0.1](https://huggingface.co/Orbina/Orbita-v0.1).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

## Prompt template

```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Orbita-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q2_K.gguf) | Q2_K | 5.506 GB | smallest, significant quality loss - not recommended for most purposes |
| [Orbita-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q3_K_S.gguf) | Q3_K_S | 6.309 GB | very small, high quality loss |
| [Orbita-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q3_K_M.gguf) | Q3_K_M | 6.909 GB | very small, high quality loss |
| [Orbita-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q3_K_L.gguf) | Q3_K_L | 7.302 GB | small, substantial quality loss |
| [Orbita-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q4_0.gguf) | Q4_0 | 7.618 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Orbita-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q4_K_S.gguf) | Q4_K_S | 7.977 GB | small, greater quality loss |
| [Orbita-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q4_K_M.gguf) | Q4_K_M | 8.560 GB | medium, balanced quality - recommended |
| [Orbita-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q5_0.gguf) | Q5_0 | 9.176 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Orbita-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q5_K_S.gguf) | Q5_K_S | 9.339 GB | large, low quality loss - recommended |
| [Orbita-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q5_K_M.gguf) | Q5_K_M | 9.812 GB | large, very low quality loss - recommended |
| [Orbita-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q6_K.gguf) | Q6_K | 11.465 GB | very large, extremely low quality loss |
| [Orbita-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/Orbita-v0.1-GGUF/tree/main/Orbita-v0.1-Q8_0.gguf) | Q8_0 | 14.027 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/Orbita-v0.1-GGUF --include "Orbita-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/Orbita-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```