File size: 9,119 Bytes
effec43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
language:
- en
license: apache-2.0
base_model: Felladrin/Pythia-31M-Chat-v1
datasets:
- totally-not-an-llm/EverythingLM-data-V3
- databricks/databricks-dolly-15k
- THUDM/webglm-qa
- starfishmedical/webGPT_x_dolly
- Amod/mental_health_counseling_conversations
- sablo/oasst2_curated
- cognitivecomputations/wizard_vicuna_70k_unfiltered
- mlabonne/chatml_dpo_pairs
pipeline_tag: text-generation
widget:
- messages:
- role: system
content: You are a career counselor. The user will provide you with an individual
looking for guidance in their professional life, and your task is to assist
them in determining what careers they are most suited for based on their skills,
interests, and experience. You should also conduct research into the various
options available, explain the job market trends in different industries, and
advice on which qualifications would be beneficial for pursuing particular fields.
- role: user
content: Heya!
- role: assistant
content: Hi! How may I help you?
- role: user
content: I am interested in developing a career in software engineering. What
would you recommend me to do?
- messages:
- role: system
content: You are a helpful assistant who answers user's questions with details
and curiosity.
- role: user
content: What are some potential applications for quantum computing?
- messages:
- role: system
content: You are a highly knowledgeable assistant. Help the user as much as you
can.
- role: user
content: What are some steps I can take to become a healthier person?
inference:
parameters:
max_new_tokens: 250
penalty_alpha: 0.5
top_k: 2
repetition_penalty: 1.0016
tags:
- TensorBlock
- GGUF
model-index:
- name: Pythia-31M-Chat-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 22.7
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 25.6
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.24
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.99
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 0.0
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## Felladrin/Pythia-31M-Chat-v1 - GGUF
This repo contains GGUF format model files for [Felladrin/Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/Pythia-31M-Chat-v1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Pythia-31M-Chat-v1-Q2_K.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q2_K.gguf) | Q2_K | 0.017 GB | smallest, significant quality loss - not recommended for most purposes |
| [Pythia-31M-Chat-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q3_K_S.gguf) | Q3_K_S | 0.019 GB | very small, high quality loss |
| [Pythia-31M-Chat-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q3_K_M.gguf) | Q3_K_M | 0.019 GB | very small, high quality loss |
| [Pythia-31M-Chat-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q3_K_L.gguf) | Q3_K_L | 0.019 GB | small, substantial quality loss |
| [Pythia-31M-Chat-v1-Q4_0.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q4_0.gguf) | Q4_0 | 0.021 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Pythia-31M-Chat-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q4_K_S.gguf) | Q4_K_S | 0.021 GB | small, greater quality loss |
| [Pythia-31M-Chat-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q4_K_M.gguf) | Q4_K_M | 0.021 GB | medium, balanced quality - recommended |
| [Pythia-31M-Chat-v1-Q5_0.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q5_0.gguf) | Q5_0 | 0.023 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Pythia-31M-Chat-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q5_K_S.gguf) | Q5_K_S | 0.023 GB | large, low quality loss - recommended |
| [Pythia-31M-Chat-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q5_K_M.gguf) | Q5_K_M | 0.023 GB | large, very low quality loss - recommended |
| [Pythia-31M-Chat-v1-Q6_K.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q6_K.gguf) | Q6_K | 0.025 GB | very large, extremely low quality loss |
| [Pythia-31M-Chat-v1-Q8_0.gguf](https://huggingface.co/tensorblock/Pythia-31M-Chat-v1-GGUF/blob/main/Pythia-31M-Chat-v1-Q8_0.gguf) | Q8_0 | 0.032 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Pythia-31M-Chat-v1-GGUF --include "Pythia-31M-Chat-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Pythia-31M-Chat-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|