---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct/blob/main/LICENSE
language:
- en
base_model: Qwen/Qwen2.5-Coder-14B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
- TensorBlock
- GGUF
---
## Qwen/Qwen2.5-Coder-14B-Instruct - GGUF
This repo contains GGUF format model files for [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Qwen2.5-Coder-14B-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q2_K.gguf) | Q2_K | 5.770 GB | smallest, significant quality loss - not recommended for most purposes |
| [Qwen2.5-Coder-14B-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q3_K_S.gguf) | Q3_K_S | 6.660 GB | very small, high quality loss |
| [Qwen2.5-Coder-14B-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q3_K_M.gguf) | Q3_K_M | 7.339 GB | very small, high quality loss |
| [Qwen2.5-Coder-14B-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q3_K_L.gguf) | Q3_K_L | 7.925 GB | small, substantial quality loss |
| [Qwen2.5-Coder-14B-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q4_0.gguf) | Q4_0 | 8.518 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Qwen2.5-Coder-14B-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q4_K_S.gguf) | Q4_K_S | 8.573 GB | small, greater quality loss |
| [Qwen2.5-Coder-14B-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q4_K_M.gguf) | Q4_K_M | 8.988 GB | medium, balanced quality - recommended |
| [Qwen2.5-Coder-14B-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q5_0.gguf) | Q5_0 | 10.267 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Qwen2.5-Coder-14B-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q5_K_S.gguf) | Q5_K_S | 10.267 GB | large, low quality loss - recommended |
| [Qwen2.5-Coder-14B-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q5_K_M.gguf) | Q5_K_M | 10.509 GB | large, very low quality loss - recommended |
| [Qwen2.5-Coder-14B-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q6_K.gguf) | Q6_K | 12.125 GB | very large, extremely low quality loss |
| [Qwen2.5-Coder-14B-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF/blob/main/Qwen2.5-Coder-14B-Instruct-Q8_0.gguf) | Q8_0 | 15.702 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF --include "Qwen2.5-Coder-14B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Qwen2.5-Coder-14B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```