--- license: creativeml-openrail-m tags: - stable-diffusion - prompt-generator - arxiv:2210.14140 - TensorBlock - GGUF widget: - text: amazing - text: a photo of - text: a sci-fi - text: a portrait of - text: a person standing - text: a boy watching datasets: - FredZhang7/stable-diffusion-prompts-2.47M - poloclub/diffusiondb - Gustavosta/Stable-Diffusion-Prompts - bartman081523/stable-diffusion-discord-prompts base_model: FredZhang7/distilgpt2-stable-diffusion-v2 ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## FredZhang7/distilgpt2-stable-diffusion-v2 - GGUF This repo contains GGUF format model files for [FredZhang7/distilgpt2-stable-diffusion-v2](https://huggingface.co/FredZhang7/distilgpt2-stable-diffusion-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [distilgpt2-stable-diffusion-v2-Q2_K.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q2_K.gguf) | Q2_K | 0.061 GB | smallest, significant quality loss - not recommended for most purposes | | [distilgpt2-stable-diffusion-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q3_K_S.gguf) | Q3_K_S | 0.067 GB | very small, high quality loss | | [distilgpt2-stable-diffusion-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q3_K_M.gguf) | Q3_K_M | 0.070 GB | very small, high quality loss | | [distilgpt2-stable-diffusion-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q3_K_L.gguf) | Q3_K_L | 0.072 GB | small, substantial quality loss | | [distilgpt2-stable-diffusion-v2-Q4_0.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q4_0.gguf) | Q4_0 | 0.077 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [distilgpt2-stable-diffusion-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q4_K_S.gguf) | Q4_K_S | 0.077 GB | small, greater quality loss | | [distilgpt2-stable-diffusion-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q4_K_M.gguf) | Q4_K_M | 0.079 GB | medium, balanced quality - recommended | | [distilgpt2-stable-diffusion-v2-Q5_0.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q5_0.gguf) | Q5_0 | 0.086 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [distilgpt2-stable-diffusion-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q5_K_S.gguf) | Q5_K_S | 0.086 GB | large, low quality loss - recommended | | [distilgpt2-stable-diffusion-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q5_K_M.gguf) | Q5_K_M | 0.088 GB | large, very low quality loss - recommended | | [distilgpt2-stable-diffusion-v2-Q6_K.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q6_K.gguf) | Q6_K | 0.096 GB | very large, extremely low quality loss | | [distilgpt2-stable-diffusion-v2-Q8_0.gguf](https://huggingface.co/tensorblock/distilgpt2-stable-diffusion-v2-GGUF/blob/main/distilgpt2-stable-diffusion-v2-Q8_0.gguf) | Q8_0 | 0.123 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/distilgpt2-stable-diffusion-v2-GGUF --include "distilgpt2-stable-diffusion-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/distilgpt2-stable-diffusion-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```