---
license: other
base_model: cognitivecomputations/dolphin-2.9-llama3-8b
tags:
- generated_from_trainer
- axolotl
- TensorBlock
- GGUF
datasets:
- cognitivecomputations/Dolphin-2.9
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- HuggingFaceH4/ultrachat_200k
- microsoft/orca-math-word-problems-200k
- abacusai/SystemChat-1.1
- Locutusque/function-calling-chatml
- internlm/Agent-FLAN
model-index:
- name: out
results: []
---
## cognitivecomputations/dolphin-2.9-llama3-8b - GGUF
This repo contains GGUF format model files for [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [dolphin-2.9-llama3-8b-Q2_K.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q2_K.gguf) | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes |
| [dolphin-2.9-llama3-8b-Q3_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_S.gguf) | Q3_K_S | 3.413 GB | very small, high quality loss |
| [dolphin-2.9-llama3-8b-Q3_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_M.gguf) | Q3_K_M | 3.743 GB | very small, high quality loss |
| [dolphin-2.9-llama3-8b-Q3_K_L.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_L.gguf) | Q3_K_L | 4.025 GB | small, substantial quality loss |
| [dolphin-2.9-llama3-8b-Q4_0.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_0.gguf) | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [dolphin-2.9-llama3-8b-Q4_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_K_S.gguf) | Q4_K_S | 4.370 GB | small, greater quality loss |
| [dolphin-2.9-llama3-8b-Q4_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_K_M.gguf) | Q4_K_M | 4.583 GB | medium, balanced quality - recommended |
| [dolphin-2.9-llama3-8b-Q5_0.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q5_0.gguf) | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [dolphin-2.9-llama3-8b-Q5_K_S.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q5_K_S.gguf) | Q5_K_S | 5.215 GB | large, low quality loss - recommended |
| [dolphin-2.9-llama3-8b-Q5_K_M.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q5_K_M.gguf) | Q5_K_M | 5.339 GB | large, very low quality loss - recommended |
| [dolphin-2.9-llama3-8b-Q6_K.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q6_K.gguf) | Q6_K | 6.143 GB | very large, extremely low quality loss |
| [dolphin-2.9-llama3-8b-Q8_0.gguf](https://huggingface.co/tensorblock/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/dolphin-2.9-llama3-8b-GGUF --include "dolphin-2.9-llama3-8b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/dolphin-2.9-llama3-8b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```