--- library_name: transformers license: gemma language: - tr base_model: neuralwork/gemma-2-9b-it-tr pipeline_tag: text-generation tags: - TensorBlock - GGUF model-index: - name: neuralwork/gemma-2-9b-it-tr results: - task: type: multiple-choice dataset: name: MMLU_TR_V0.2 type: multiple-choice metrics: - type: 5-shot value: 0.6117 name: 5-shot verified: true - type: 0-shot value: 0.5583 name: 0-shot verified: true - type: 25-shot value: 0.564 name: 25-shot verified: true - type: 10-shot value: 0.5646 name: 10-shot verified: true - type: 5-shot value: 0.6211 name: 5-shot verified: true - type: 5-shot value: 0.6209 name: 5-shot verified: true ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## neuralwork/gemma-2-9b-it-tr - GGUF This repo contains GGUF format model files for [neuralwork/gemma-2-9b-it-tr](https://huggingface.co/neuralwork/gemma-2-9b-it-tr). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` user {prompt} model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-2-9b-it-tr-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q2_K.gguf) | Q2_K | 3.805 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-2-9b-it-tr-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q3_K_S.gguf) | Q3_K_S | 4.338 GB | very small, high quality loss | | [gemma-2-9b-it-tr-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q3_K_M.gguf) | Q3_K_M | 4.762 GB | very small, high quality loss | | [gemma-2-9b-it-tr-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q3_K_L.gguf) | Q3_K_L | 5.132 GB | small, substantial quality loss | | [gemma-2-9b-it-tr-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q4_0.gguf) | Q4_0 | 5.443 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-2-9b-it-tr-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q4_K_S.gguf) | Q4_K_S | 5.479 GB | small, greater quality loss | | [gemma-2-9b-it-tr-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q4_K_M.gguf) | Q4_K_M | 5.761 GB | medium, balanced quality - recommended | | [gemma-2-9b-it-tr-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q5_0.gguf) | Q5_0 | 6.484 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-2-9b-it-tr-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q5_K_S.gguf) | Q5_K_S | 6.484 GB | large, low quality loss - recommended | | [gemma-2-9b-it-tr-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q5_K_M.gguf) | Q5_K_M | 6.647 GB | large, very low quality loss - recommended | | [gemma-2-9b-it-tr-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q6_K.gguf) | Q6_K | 7.589 GB | very large, extremely low quality loss | | [gemma-2-9b-it-tr-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-2-9b-it-tr-GGUF/blob/main/gemma-2-9b-it-tr-Q8_0.gguf) | Q8_0 | 9.827 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma-2-9b-it-tr-GGUF --include "gemma-2-9b-it-tr-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma-2-9b-it-tr-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```